Меню Рубрики

Почему нельзя полностью компенсировать реактивную мощность

Реактивная мощность и энергия ухудшают показатели работы энергосистемы , то есть загрузка реактивными токами генераторов электростанций увеличивает расход топлива; увеличиваются потери в подводящих сетях и приемниках, увеличивается падение напряжения в сетях.

Реактивный ток дополнительно нагружает линии электропередачи , что приводит к увеличению сечений проводов и кабелей и соответственно к увеличению капитальных затрат на внешние и внутриплощадочные сети.

Компенсация реактивной мощности , в настоящее время, является немаловажным фактором позволяющим решить вопрос энергосбережения практически на любом предприятии.

По оценкам отечественных и ведущих зарубежных специалистов, доля энергоресурсов, и в частности электроэнергии занимает величину порядка 30-40% в стоимости продукции. Это достаточно веский аргумент, чтобы руководителю со всей серьезностью подойти к анализу и аудиту энергопотребления и выработке методики компенсации реактивной мощности . Компенсация реактивной мощности – вот ключ к решению вопроса энергосбережения.

Потребители реактивной мощности

Основные потребители реактивной мощности — асинхронные электродвигатели, которые потребляют 40 % всей мощности совместно с бытовыми и собственными нуждами; электрические печи 8 %; преобразователи 10 %; трансформаторы всех ступеней трансформации 35 %; линии электропередач 7 %.

В электрических машинах переменный магнитный поток связан с обмотками. Вследствие этого в обмотках при протекании переменного тока индуктируются реактивные э.д.с. обуславливающие сдвиг по фазе (fi) между напряжением и током. Этот сдвиг по фазе обычно увеличивается, а косинус фи уменьшается при малой нагрузке. Например, если косинус фи двигателей переменного тока при полной нагрузке составляет 0,75-0,80, то при малой нагрузке он уменьшится до 0,20-0,40 .

Малонагруженные трансформаторы также имеют низкий коэффициент мощности (косинус фи). Поэтому, применять компенсацию реактивной мощности, то результирующий косинус фи энергетической системы будет низок и ток нагрузки электрической, без компенсации реактивной мощности, будет увеличиваться при одной и той же потребляемой из сети активной мощности. Соответственно при компенсации реактивной мощности (применении автоматических конденсаторных установок КРМ) ток потребляемый из сети снижается, в зависимости от косинус фи на 30-50%, соответственно уменьшается нагрев проводящих проводов и старение изоляции.

Кроме этого, реактивная мощность наряду с активной мощностью учитывается поставщиком электроэнергии , а следовательно, подлежит оплате по действующим тарифам, поэтому составляет значительную часть счета за электроэнергию.

Структура потребителей реактивной мощности в сетях энергосистем (по установленной активной мощности):

Прочие преобразователи: переменного тока в постоянный, тока промышленной частоты в ток повышенной или пониженной частоты, печная нагрузка (индукционные печи, дуговые сталеплавильные печи), сварка (сварочные трансформаторы, агрегаты, выпрямители, точечная, контактная).

Суммарные абсолютные и относительные потери реактивной мощности в элементах питающей сети весьма велики и достигают 50% мощности, поступающей в сеть. Примерно 70 — 75% всех потерь реактивной мощности составляют потери в трансформаторах.

Так, в трехобмоточном трансформаторе ТДТН-40000/220 при коэффициенте загрузки, равном 0,8, потери реактивной мощности составляют около 12%. На пути от электростанции происходит самое меньшее три трансформации напряжения, и поэтому потери реактивной мощности в трансформаторах и автотрансформаторах достигают больших значений.

Способы снижения потребления реактивной мощности. Компенсация реактивной мощности

Наиболее действенным и эффективным способом снижения потребляемой из сети реактивной мощности является применение установок компенсации реактивной мощности (конденсаторных установок) .

Использование конденсаторных установок для компенсации реактивной мощности позволяет:

  • разгрузить питающие линии электропередачи, трансформаторы и распределительные устройства;
  • снизить расходы на оплату электроэнергии
  • при использовании определенного типа установок снизить уровень высших гармоник;
  • подавить сетевые помехи, снизить несимметрию фаз;
  • сделать распределительные сети более надежными и экономичными.

источник

Асинхронные двигатели, трансформаторы, газоразрядные и люминесцентные лампы, индукционные и дуговые печи и т.д. в силу своих физических свойств вместе с активной энергией потребляют из сети также и реактивную энергию, которая необходима для создания электромагнитного поля. В отличие от активной энергии, реактивная не преобразуется в другие виды – механическую или тепловую – и не выполняет полезной работы, однако вызывает потери при ее передаче. На Рис.1 изображены направления протекания тока при работе с реактивными нагрузками.

Наличие в сети реактивной мощности (Q, Вар) характеризуется коэффициентом мощности (PF, cos ф) и является соотношением активной (P, Вт) к полной (S, ВА). Ниже можно увидеть зависимость полной мощности от ее составляющих как на векторной диаграмме, так и на более житейском уровне – бокале пива, где пиво является активной составляющей, а пена – реактивной. Никто же не хочет иметь бокал только с пеной?

Рис.2. Треугольник мощностей. Расчет коэффициента мощности.

При низких значениях коэффициента мощности в сети будет возникать ряд нежелательных явлений, которые могут привести к существенному уменьшению срока службы оборудования. Рекомендуется иметь cos ф не менее 0,9 (например, в Чехии за cos ф менее 0,95 штрафуют). Для этого разработан ряд мероприятий по регулированию баланса реактивной мощности в сети – компенсация реактивной мощности.

Следует понимать, что реактивная мощность бывает двух характеров – индуктивная и емкостная. Нас интересует компенсация только первого типа, т.к. второй встречается редко. В нашем случае – сетях с индуктивной нагрузкой – для увеличения cos ф требуется устанавливать компенсационные конденсаторы. Но как это сделать?

Выбор способа компенсации предполагает определение места установки конденсаторов (зачастую в составе конденсаторной установки (далее КУ)). Существует три основных варианта:

Размещение конденсаторов у устройств с низким cos ф и включение одновременно с последними.

Размещение конденсаторов у группы устройств (например, пожарных насосов).

Предусматривает установку КУ на главном распределительном щите. Если предыдущие варианты могли быть как регулируемыми, так и нет, то этот, как правило, регулируемый.

При правильном подборе КУ мероприятия по компенсации реактивной мощности позволяют:

существенно уменьшить нагрузку на трансформаторах, а следовательно уменьшить их нагрев и увеличить срок службы

при включении КУ в расчет при проектировании новых объектов, существенно уменьшить сечение проводников

при включении КУ в уже существующие сети, разгрузить их, повышая пропускную способность без реконструкции

снизить расходы на электроэнергию за счет снижения потери в проводниках

повысить стабильность напряжения (все) и качество электроэнергии (при использовании ФКУ)

Где мы можем сэкономить видно невооруженным глазом, но для начала придется и потратиться.

Во-первых, необходимо заказать проект, который следует доверить проверенной организации. Которая в свою очередь проведет ряд измерений или сделает расчеты для новых объектов и исходя из них даст рекомендации по способу компенсации, типу КУ и их параметрам.

Во-вторых, следует выбрать организацию-сборщика, которая соберет, установит и настроит наши КУ.

Читайте также:  Полезные свойства чабреца в чае для женщин

Рассмотрим максимально возможную комплектацию конденсаторной установки:

Вводное устройство – автоматический выключатель, разъединитель предохранительный или выключатель нагрузки (при наличии еще одного вводного устройства, например, в ГРЩ).

Защитные устройства ступеней – большинство производителей (например, ZEZ Silko) рекомендуют использовать плавкие вставки с характеристикой gG (см. таблицу ниже), но нередко можно встретить и защиту автоматическими выключателями.

Коммутационное устройство (для статической компенсации НН) – контактор с токоограничевающей приставкой (контакты предварительного включения с сопротивлениями). Важно выбрать качественного производителя, т.к. через контактор при включении ступени проходят огромные токи (до 200Iе), обусловленные зарядом конденсатора, например, Benedict-Jager или Eaton (Moeller).

Антирезонансные дроссели (реакторы) – используются для защиты от перегрузки токами конденсаторов при наличии в сети высших гармоник.

Компенсационные конденсаторы – главный компонент всей установки – емкостной элемент. Читать подробнее о применении, конструкции и монтаже низковольтных цилиндрических компенсационных конденсаторов в предыдущей статье.

Регулятор реактивной мощности – своего рода анализатор сети с функцией управления ступенями. В зависимости от модели разные регуляторы кроме основных параметров (U, I, P, cos ф, количество подключенных ступеней) контролируют и ряд дополнительных (нелинейные искажения, температура и т.д). Также могу быть и дополнительные функции, например, коммуникация или автонастройка.

* Рассмотрена только основная комплектация без оболочек и микроклимата, защиты вторичных цепей.

Номинальный ток 3-фазного конденсатора

3-фазн. компенсационная мощность при 400 V

Рекомендуемое сечение Cu проводников

источник

Большинство нагрузок в современных системах электроснабжения имеют индуктивный характер. К ним, например, относятся электродвигатели, трансформаторы, балласты люминесцентных ламп, индукционные печи. Для нормальной работы подобных нагрузок в них требуется создать магнитное поле.

Индуктивные нагрузки требуют наличия двух составляющих тока:

  • Активной составляющей, за счет которой происходит нагрев, получение света, механическое движение, полезная работа и т.п.;
  • Реактивной составляющей, необходимой для получения и поддержания магнитного поля.

Активная составляющая тока отвечает за потребление активной мощности, которая может быть измерена с помощью ваттметра. Она измеряется в ваттах (Вт) и киловаттах (кВт). Реактивная мощность не совершает никакой полезной работы, но циркулирует между генератором и нагрузкой. При этом она увеличивает нагрузку на источники питания и распредсистему. Реактивная мощность измеряется в вольт-амперах-реактивных (вар).

Вместе активная и реактивная мощность образуют полную или кажущуюся мощность. Она измеряется в киловольт-амперах (кВА).

Рис. 1. Активная мощность

Рис. 2.Реактивная мощность

Под коэффициентом мощности понимают отношение активной мощности к полной. Этот коэффициент характеризует, насколько эффективно используется электроэнергия. Высокие значения коэффициента мощности соответствуют эффективному использованию электроэнергии, а низкие – напротив, неэффективному.

Для определение коэффициента мощности (PF) следует разделить активную мощность (в кВт) на полную (кВА). Для линейных систем с синусоидальными токами коэффициент мощности численно равен cos ?:

Например, для токарно-карусельного станка, работающего с полезной мощностью 100 кВт и полной мощностью 125 кВА, коэффициент мощности составит 100/125 = 0,8.

Рис. 3. Полная мощность

Рис. 4. Треугольник мощностей

Примечание: показанный на рис.4 треугольник мощностей используется для иллюстрации соотношений между активной, реактивной и полной мощностями.

Низкий cos ? означает, что вы не полностью используете оплачиваемую вами электроэнергию.

Из показанных на рис.5 соотношений можно видеть, что полная мощность уменьшается с ростом коэффициента мощности. При коэффициенте мощности, равном 70%, для получения 100 кВт требуется 142 кВА. При коэффициенте мощности, равном 95%, для получения 100 кВт требуется только 105 кВА. Если посмотреть на все это с точки зрения величины тока, получается, что при коэффициенте мощности 70% требуется на 35% больший ток для совершения той же самой полезной работы.

Рис. 5. Типичные треугольники мощностей

Коэффициент мощности можно повысить путем установки компенсирующих конденсаторов в распредсистеме предприятия

Если полная мощность (кВА) больше, чем полезная мощность (кВт), через энергосистему протекает сумма активного и реактивного токов. Силовые конденсаторы являются своего рода генератором реактивной мощности (см. рис. 6). Выдавая реактивный ток, они снижают общий ток, протекающий от энергосистемы к нагрузкам.

Теоретически конденсаторы могут выдать 100% требуемой реактивной мощности. Однако наиболее выгодным является поддержание коэффициента мощности на уровне 95%.

На рис.7 показано потребление полной мощности в системе до и после установки конденсаторов. Установка конденсаторов и увеличение коэффициента мощности до 95% обеспечивает снижение полной мощности со 142 кВА до 105 кВА, т.е. снижение составляет 35%.

Рис.6. Конденсаторы как генераторы реактивной мощности

Рис.7. Требуемая полная мощность до и после компенсации

Компенсация реактивной мощности: руководство для главного энергетика

Силовые конденсаторы дают множество преимуществ:

  • снижение расходов на электроэнергию;
  • снижение требований к мощности системы;
  • улучшение стабильности напряжения;
  • снижение потерь.

Ваша энергоснабжающая организация поставляет как активную (кВт), так и реактивную мощность (квар). Хотя реактивная мощность и не регистрируется счетчиками электроэнергии (считающими киловатт- часы), распределительная сеть должна быть достаточно мощной, чтобы обеспечить необходимую полную мощность. Поэтому у энергоснабжающих компаний есть масса способов заставить потребителей компенсировать их расходы на более мощные генераторы, трансформаторы, кабели, выключатели и т.п.

Как показано в случае ниже, конденсаторы могут сэкономить ваши деньги вне зависимости от того, как именно происходит начисление платы за электроэнергию.

Энергоснабжающая организация измеряет и тарифицирует каждый ампер потребляемого тока, включая реактивную составляющую.

Энергоснабжающая организация начисляет плату в соответствии с потребляемой активной энергией и добавляет пени при низком коэффициенте мощности. Также может использоваться поправочный коэффициент, на который умножается величина активной энергии. Следующая формула иллюстрирует начисление, при котором «отправной точкой» является коэффициент мощности, равный 90%:

фактический коэффициент мощности

Если коэффициент мощности равен 0,84, поставщик электроэнергии увеличит плату на % в соответствии с формулой:

кВт х 0,90 / 0,84 = 107 (множитель)

Некоторые энергоснабжающие организации требуют дополнительную плату за низкий коэффициент мощности, но предоставляют вычеты или бонусы за потребление свыше определенного уровня.

Энергоснабжающая организация напрямую взимает плату за реактивную мощность, которая обычно составляет определенную долю от активной мощности (кВт). Например, если эта плата составляет 1 рубль за каждый квар для всего, что находится сверх 50% активной мощности. Иными словами, если имеется нагрузка 400 кВт, энергоснабжающая организация предоставит 200 квар бесплатно.

Применение конденсаторов для компенсации реактивной мощности увеличивает пропускную способность системы по току. Повышение коэффициента мощности снижает количество квар на кВт полезной нагрузки. Таким образом, используя конденсаторы можно увеличить полезную нагрузку при сохранении величины полной мощности (кВА).

Читайте также:  Что готовить в походе с палатками на 3 дня

Рис.8. Увеличение пропускной способности трансформатора при компенсации

Предприятие имеет трансформатор мощностью 500 кВА, работающий почти на номинальной мощности. Он потребляет 480 кВА или 578 А при 400 В. Существующий коэффициент мощности – 75%, соответственно доступная активная мощность составляет 360 кВт.

Желательно увеличить производительность на 25%, т.е. необходимо получить 450 кВт. Как этого добиться? Самый простой выход – установить новый трансформатор. Для получения 450 кВт потребуется трансформатор мощностью 600 кВА при работе с коэффициентом мощности 75%. При этом, скорее всего, понадобится следующий стандартный типоразмер трансформатора (750 кВА).

Возможно, лучшим решением будет повысить коэффициент мощности, чтобы трансформатор смог работать с дополнительной нагрузкой. Для повышения коэффициента мощности с 75 до 95% при нагрузке в 450 кВт потребуется конденсатор с мощностью 450 х 0,553 = 248,8 квар.

Аналогичный принцип используется при необходимости снизить ток, протекающий через перегруженное оборудование. Повышение коэффициента мощности с 75 до 95% при той же активной мощности приводит к снижению тока на 21%. Если посмотреть по другому, при работе с коэффициентом мощности 75% ток возрастает на 26,7%, а при 65% — на 46,2%.

Низкий косинус фи является следствием того, что множество двигателей работают с нагрузкой ниже номинальной. Такое часто происходит в циклических технологических процессах, например, при использовании циркулярных пил, шаровых мельниц, конвейеров, компрессоров, шлифовальных станков, прессов и т.п. Для подобных механизмов двигатели обычно выбираются, исходя из максимально возможной нагрузки. Примерами механизмов, работающих с низким коэффициентом мощности (от 30 до 50%), можно считать токарный станок, работающий в режиме неглубокого реза, ненагруженный компрессор, циркулярную пилу в отсутствии заготовки.

С низким коэффициентом мощности обычно работают предприятия в следующих отраслях:

Отрасль Нескомпенсированный коэффициент мощности
Лесопильни 45-65%
Производство пластмасс (особенно экструдеры) 55-70%
Металлообрабатывающие станки, прессы 60-70%
Гальванопокрытия, текстиль, химическая промышленность, пивоварни 65-75%
Больницы, склады, литейное производство 70-80%

Включение конденсаторов в новые проекты и проекты модернизации производства позволяет уменьшить типоразмеры трансформаторов, шин, выключателей и т.п., что ведет к прямой экономии.

На рис. 9 показано, как высвобождается полная мощность системы (кВА) при увеличении коэффициента мощности. Увеличение коэффициента мощности с 70 до 90% высвобождает 0,32 кВА на кВт. При нагрузке 400 кВт высвобождается 128 кВт.

Пониженное из-за больших потребляемых токов напряжение приводит к затрудненному пуску двигателей и их перегреву. По мере снижения коэффициента мощности растет общий ток в линии, что приводит к увеличению падения напряжения. Установка конденсаторов и конденсаторных установок для компенсации реактивной мощности и снижение просадок позволяют добиться более эффективной работы двигателей и продлить их срок службы.

Потери из-за низкого коэффициента мощности связаны с реактивным током, протекающим в системе. Эти потери связаны с выделением тепла и могут быть устранены за счет коррекции коэффициента мощности. Мощность потерь (в ваттах) в распредсистеме рассчитывается как произведение квадрата тока на активное сопротивление контура (I2R). Рассчитать снижение потерь можно по формуле:

Снижение потерь (%) = 100 – 100 х (начальный коэф. мощности/конечный коэф. мощности) 2

Рис.9. Высвобождение полной мощности при коррекции коэффициента мощности

Если сделан вывод о целесообразности компенсации реактивной мощности на том или ином объекте, понадобится выбрать оптимальный типоразмер и количество конденсаторов.

Существует два основных способа установки конденсаторов: «индивидуальный» (когда отдельные конденсаторы устанавливаются непосредственно у нагрузок, обычно линейных) и «групповой» (когда батарея с фиксированной или регулируемой емкостью устанавливается на присоединении или на подстанции).

Преимущества установки индивидуальных конденсаторов рядом с нагрузками:

  • Предсказуемость; конденсаторы не могут создать проблемы в сети при работе без нагрузки;
  • Не требуются отдельные выключатели; двигатель всегда включается вместе с относящимся к нему конденсатором;
  • Оптимизация режимов работы двигателей за счет более эффективного использования электроэнергии и снижения просадок напряжения;
  • Двигатели можно переставлять вместе с относящимися к ним конденсаторами;
  • Проще выбрать конденсатор для конкретной нагрузки;
  • Снижение потерь в линии;
  • Повышение пропускной способности системы.

Преимущества установки конденсаторных батарей на присоединении или на подстанции:

  • Ниже цена за квар;
  • Повышение коэффициента мощности всего предприятия, что снижает или исключает любые санкции за низкий коэффициент мощности;
  • Автоматическое переключение конденсаторов обеспечивает получение строго необходимой реактивной мощности, что исключает перекомпенсацию и связанные с ней перенапряжения.

Преимущества и недостатки индивидуальной и групповой (с нерегулируемыми и автоматически регулируемыми батареями) компенсации

Метод Преимущества Недостатки
Индивидуальные конденсаторы Наиболее эффективный метод, наибольшая гибкость Большая стоимость установки и обслуживания
Нерегулируемая батарея Наиболее экономичное решение, требуется меньше точек установки Менее гибкое решение, требуются выключатели и/или контакторы
Автоматически регулируемая батарея Наилучшее решение при меняющихся нагрузках, исключаются перенапряжения, низкая стоимость установки Выше стоимость оборудования
Комбинированный Наиболее подходящее решение при большом количестве двигателей Менее гибкое решение

Для выбора оптимального решения необходимо взвесить достоинства и недостатки каждого из возможных способов компенсации. При этом следует учитывать «переменные объекта», такие как тип нагрузок, их мощность, постоянство нагрузки, нагрузочная способность сети, способы пуска двигателей и способ начисления платы за электроэнергию.

Если на предприятии установлено много крупных двигателей с мощностью 35 кВт и более, обычно целесообразно устанавливать на каждый двигатель свой конденсатор и включать его одновременно с относящимся к нему конденсатором. Если на предприятии используется много мелких двигателей, от 0,5 до 18 кВт, можно сгруппировать эти двигатели и установить один конденсатор в центральной точке системы. Часто наилучшим решением для предприятий с множеством двигателей разных мощностей оказывается комбинирование обоих типов компенсации.

Для предприятий с мощными нагрузками может оказаться выгодным комбинирование индивидуальной и групповой компенсации с нерегулируемыми или автоматическими конденсаторными батареями. С другой стороны, для небольшого объекта может оказаться достаточно одного единственного конденсатора в распределительном щите.

Иногда на предприятии обнаруживается изолированный «проблемный участок», в котором требуется коррекция. Такая ситуация может возникнуть, если на предприятии используются сварочные аппараты, индукционные нагреватели или приводы постоянного тока. В этом случае, если скомпенсировать реактивную мощность на конкретном фидере, питающем нагрузку с низким коэффициентом мощности, это повысит коэффициент мощности всего предприятия, и дополнительные конденсаторы будут не нужны.

Если предприятие работает круглосуточно и потребляет постоянную мощность, использование нерегулируемых конденсаторов наиболее экономично. Если нагрузка «привязана» к восьмичасовому рабочему дню и потребляется пять дней в неделю, удобно использовать конденсаторные батареи, отключаемые в периоды с меньшей нагрузкой.

Если фидеры или трансформаторы перегружены, или требуется увеличить нагрузку и без того нагруженных линий, компенсацию реактивной мощности необходимо производить непосредственно на нагрузке. Если распредсистема имеет запас по току, конденсаторы можно устанавливать на главных фидерах. Если нагрузка сильно меняется, разумно использовать регулируемую батарею с автоматическим переключением ступеней.

Размеры тарифов и штрафы за низкий коэффициент мощности могут существенно влиять на экономический эффект от компенсации и срок окупаемости. Во многих отраслях оптимально подобранное оборудование для коррекции коэффициента мощности окупается менее чем за два года.

Единицей измерения мощности конденсаторов для компенсации реактивной мощности является квар, равный 1000 вар (вольт-ампер-реактивный). Количество квар характеризует, какую реактивную мощность выдаст конденсатор.

Для выбора конденсаторов для индивидуальной компенсации моторных нагрузок следует обратиться к таблице 3. При этом необходимо использовать данные с заводской таблички двигателя — номинальную скорость и мощность. В таблице приведены мощности конденсаторов (квар), необходимые для доведения коэффициента мощности до 95%. В таблицах также приведено, насколько снизится ток после установки конденсаторов.

Если известно, какую активную мощность (кВт) потребляет предприятие, его существующий коэффициент мощности и желаемый коэффициент мощности.

источник

Опыт Практикующего инженера: Мифы про устройства компенсации реактивной мощности

За многие годы проектирования, производства и запуска конденсаторных установок мне приходилось сталкиваться с вопросами, которые поначалу приводили в недоумение меня и весь наш техотдел. Они касались и конденсаторных установок, и в целом компенсации реактивной мощности. А иногда звонящие звонят и сразу говорят, что им нужна конденсаторная установка. Казалось бы не Клиент, а мечта. Но при выяснении нюансов оказывалось, что человек ждет от установки того, чего она сделать не может – ни теоретически, ни практически.

В этой статье я расскажу о некоторых заблуждениях, относительно конденсаторных установок – с которыми чаще всего приходилось сталкиваться.

Первый случай. Мы включили конденсаторную установку, но расходы на реактив не уменьшились.

Звонят в техподдержку. Звонящий — не наш Клиент

— Проконсультируйте, пожалуйста. Мы поставили конденсаторную установку, но у нас платежи по реактиву не изменились. В чем причина?

Мы начинаем задавать вопросы для проверки правильности подключения, правильности программирования регулятора. Есть много объективных и субъективных причин, из-за которых устройство компенсации реактива может работать хуже ожидаемого.

По ответам мы понимаем, что все включено правильно, установка расположена и подключена в нужной точке.

Тогда мы предлагаем — отправить нам почасовое потребление реактивной энергии, чтоб удостовериться в правильности параметров самой установки и получаем ответ:

— Я не могу Вам отправить почасовку. У меня счетчик не считает реактив. Мы как платили по среднему до установки конденсаторной, так и платим.

Мы объяснили, что для начала нужно поменять существующий счетчик на счетчик,который считает все. И актив и реактив. И только после этого можно и правильно подобрать конденсаторную и увидеть экономию. Не получится экономить то, что нельзя посчитать.

Заменили счетчик уже Клиенту, через месяц работы посмотрели на параметры и рассчитали требуемые характеристики. Клиенту не пришлось покупать новую КРМ — мы модернизировали существующую (добавили ступеней, уменьшили значение минимальной ступени, заменили регулятор 6-ступенчатый на 8- ступенчатый).

Платит за реактив 15% от того, что платил раньше.

Все (со счетчиком) — окупилось за 4 месяца.

Второй случай. Правда, что конденсаторная установка ПРЕВРАЩАЕТ реактивную энергию в активную.

Для того, чтоб развернуто ответить на этот вопрос, нужно написать в этом посте курс электротехники — поэтому прошу просто поверить мне, как достаточно сведущему человеку.

Это неправда.

Это две разные ЭЛЕКТРИЧЕСКИЕ энергии и конденсаторная установка – это не волшебный преобразователь, который берет реактивную энергию и превращает ее в активную.

При подключении конденсаторной установки в сеть, компенсируется реактивная энергия (опять же — не вся) и сокращается потребление активной энергии (в некоторых случаях доходит до 3,2 % — данные из личного опыта).

Все это приводит к уменьшению затрат на электроэнергию. Это тот редкий случай, когда счет от «Гор/Облэнерго» радует.

Но волшебного превращения реактива в актив не происходит.

Третий случай. Мы установили конденсаторную установку, но она не свела реактив к нулю.

Ошибка – считать, что конденсаторная установка уберет полностью реактив. Часть реактивной энергии потребляется оборудованием – например, двигателями. Они генерируют реактив, но часть из него потребляют.

Поэтому, если Вам будут обещать, что сведут реактив к нулю, т.е. в счетах за электричество напротив строки «Реактивная энергия» будет стоять ноль – знайте, что Вас вводят в заблуждение.

Нормальным значение реактивной энергии, является тогда, когда оно в пределах 20-25% от значения потребленной активной энергии. То есть,если в счете за электроэнергию у Вас потребление активной энергии 100000 кВт/ч., а потребление реактивной 20-25000 кВар – значит у Вас все нормально с реактивом и вы платите за реально потребленную реактивную энергию

Четвертый случай: Откровенный обман – компенсация реактивной энергии в быту.

В интернете много рекламы приборов, продавцы которых утверждают, что включив их в сеть – Вы уменьшите расход электроэнергии на 50%. Агрессивность рекламы заставила меня более внимательно изучить их фантастический прибор.

Оказывается, что эта дикая экономия достигается благодаря тому, что в сеть подключают конденсаторную батарею (конденсатор), которая:

1. Убирает реактивную энергию

2. Преобразует реактив в актив

По первому пункту – компенсация реактивной энергии в бытовой сети никак не повлияет на Ваш кошелек, т.к. все бытовые пользователи платят только за активную энергию

По второму пункту – это откровенное введение в заблуждение. В науке нет ни теоретических обоснований подобной возможности, ни практических реализаций.

Понятно, что не все люди разбираются во всех этих тонкостях, т.к. каждый из нас мастер в своем деле (кроме футбола и политики – тут мы все мастера:).

Именно этим и пользуются господа-придумщики всяких волшебных устройств.

UPD: Тема описанных эконом-устройств более широко раскрыта по ссылке: http://electrik.info/main/voprosy/245-pribory-dlya-yekonomii-yelektroyenergii-mif-ili.html

Надеюсь, данная статья будет вам полезна и оградит от ошибок.

Все,что я и сотрудники Вольт Энерго пишем в разделе «Статьи» на нашем сайте – «основано на реальных событиях» J

источник