Меню Рубрики

Как сделать первый спутник самому

Автор(ы) Попко Никита, 6 В класс
Возраст 12—15 лет
Учебное заведение Дворец детского творчества, г. Барановичи, Брестская обл., Беларусь.
Материалы Нитки: Ирис, швейные серые, вязальные, целлофан, кусочек ткани, игла и игольница, булавки — иглы,ножницы, клей Титан, шпажки, аэрозольная краска.
Педагог Попко Алёна Григорьевна
Тема работы Музей космонавтики

Здравствуйте, жители Страны мастеров! Представляю Вам еще одну работу моего сына «Первый спутник «. Никиту очень захватила работа над ракетой. Он много прочел о космосе, о ракетах и кораблях, но особенно ему понравилось читать о спутниках. В результате у нас теперь есть свой собственный маленький спутник.

Для изготовления шарика понадобился: целлофан и кусочек ткани. Никита плотно скрутил ткань. Завернул в целлофан.

Затем взял вязальные нитки и обмотал шарик.

Получился клубок. Хотелось, что бы шарик получился нежный. Поэтому поверх вязальных ниток обмотали еще и швейными нитками.

Для того, чтобы спутник был серого цвета. Сын серыми нитками обмотал клубочек

«Просто серый шарик не интересно» — сказал мне Никита. Я предложила вышить красную звезду нитками Ирис. Сразу вспомнились шарики темари.

Осталось дело за малым. Сделать антенны из шпажек, а именно окрасить шпажки аэрозольной краской.

Когда антенны высохли, Никита аккуратно вклеил их в шарик.

Вот такой замечательный первый спутник есть в нашем доме.

Никита был очень рад, что теперь у него есть собственная космическая техника! И хотел бы поделиться информацией которую узнал о спутнике.

Спутник-1 — первый искусственный спутник Земли, советский космический аппарат, запущенный на орбиту 4 октября 1957 года.

Корпус спутника состоял из двух полусфер диаметром 58 см из алюминиевого сплава со стыковочными шпангоутами, соединёнными между собой 36 болтами. Герметичность стыка обеспечивала резиновая прокладка. На верхней полуоболочке располагались крест накрест две уголковые вибраторные антенны[1], каждая состояла из двух плеч-штырей длиной по 2,4 м и по 2,9 м, угол между плечами в паре — 70°. Такая антенна обеспечивала близкое к равномерномуизлучение во всех направлениях, что требовалось для устойчивого радиоприема в связи с тем, что спутник был неориентирован.

Внутри герметичного корпуса были размещены: блок электрохимических источников (серебряно-цинковые аккумуляторымассой около 50 кг); радиопередающее устройство[2]; вентилятор; термореле и воздуховод системы терморегулирования; коммутирующее устройство бортовой электроавтоматики; датчики температуры и давления; бортовая кабельная сеть. Масса — 83,6 кг.

источник

4 октября 1957 года для человечества началась космическая эра. В этот день был запущен первый искусственный спутник Земли — советский «Спутник-1». Тысячи конструкторов, инженеров и учёных работали над этой задачей почти 10 лет. Сегодня запустить орбитальный спутник под силу даже школьникам — мы расскажем, как это сделать.

Эта статья была опубликована в журнале OYLA №8(36). Оформить подписку на печатную и онлайн-версию можно здесь.

Если хочется сделать что-то космическое, начать можно со спутников, причём небольших. Инженеры классифицируют их по весу: мини-спутники (до 500 кг), микроспутники (до 100 кг), наноспутники (до 10 кг), пикоспутники (до 1 кг) и фемтоспутники (до 100 г). Несмотря на миниатюрные размеры и вес, малые космические аппараты решают много задач, нередко дополняя большие спутники и в чём-то даже заменяя их.

Во-первых, эти малютки нужны для наблюдений за планетой и съёмок — дистанционного зондирования Земли. Во-вторых, они обеспечивают интернет в местах, где нет ретрансляционных вышек. В-третьих, на небольших спутниках испытываются новые технологии и ставятся эксперименты. Всё это возможно благодаря относительно небольшой стоимости этих аппаратов — от пары сотен до нескольких десятков тысяч долларов. Как следствие, собственными космическими приборами обзавелись многие университеты и энтузиасты. Всего было запущено более 1823 малых спутников, 587 из них всё ещё на орбите.

Запуск небольшого спутника не требует специальной квалификации и больших денежных затрат. К тому же можно использовать доступные технологические устройства, которые с каждым днём становятся всё более совершенными — это отлично видно, например, по мобильным телефонам. Так, на современных спутниках можно установить огромное количество датчиков и приборов, начиная с антенн и заканчивая спектрометрами.

Согласно расчётам NASA, более 95% всех объектов на около­земной орбите — это мусор. На рисунке представ­лена компью­терная модель его распреде­ления.

Если вы собираетесь запустить спутник, необходимо как следует обдумать задачу, которую вы хотите решить. В интернете можно найти много организаций и энтузиастов, которые имеют нужный вам опыт и могут подсказать, как действовать. Ваша цель должна быть осуществимой и хорошо продуманной, чтобы аппарат принёс пользу, а не стал мусором на орбите. Бездумные запуски приближают так называемый синдром Кесслера — ситуацию, когда космический мусор на околоземной орбите сделает ближний космос полностью непригодным для практического использования. Феномен назван в честь консультанта NASA Дональда Кесслера, который первым описал эту проблему.

В одиночку запустить спутник будет сложно. Поэтому сразу же ищите единомышленников — можно кинуть клич в социальных сетях, на профильных форумах, в университетах, где есть аэрокосмические специальности. Существуют даже летние космические лагеря, где команда вашей мечты уже собрана в полном составе. Для создания спутника потребуются конструкторы, электронщики, программисты, специалисты по баллистике и эксперименту, который вы планируете провести на орбите. Не забудьте о менеджере — он будет взаимодействовать с предприятиями и возьмёт на себя управление проектом.

Центр управления полётами NASA. ­Реакция диспетчеров на успешное завершение миссии «Аполлон-11» (16–24 июля 1969 года), в ходе которой человек впервые высадился на Луну.

Ни один космический аппарат не будет спроектирован, изготовлен и протестирован без технического задания. Это основной документ проекта, где описано всё: сроки выполнения, цель создания, технические требования, наполнение (полезная нагрузка), перегрузки, которые аппарат должен выдерживать, условия испытаний, материалы (они должны соответствовать стандартам), этапы выполнения работы, численные характеристики, которым должен удовлетворять спутник, распределение задач внутри команды, планы-графики и прочее. Именно этот документ вы будете показывать коллегам и представите в космическое агентство, чтобы получить разрешение на запуск.

Пришло время определиться с параметрами спутника. От того, какими будут его конфигурация и полезная нагрузка (научное наполнение), зависят форма, размер и множество иных характеристик. Для школьного или студенческого аппарата подойдёт формат наноспутника, а именно CubeSat — «кубик» размером 10 х 10 х 10 см. Прелесть кубсатов в том, что это конструктор. Составные части — кубики — можно собирать, то есть ставить друг на друга и соединять, чтобы увеличить количество отсеков для оборудования. Таким образом, размер CubeSat напрямую зависит от объёма научных задач, которые будет решить ваш спутник.

Необходимо понимать, с какими предприятиями ракетно-космической области вам предстоит сотрудничать и кто может оказаться полезен для реализации вашего проекта. Не исключено, что построить спутник вы сможете и сами, но дальше нужно будет его испытывать и получать лицензию на запуск, поэтому придётся взаимодействовать с космическими предприятиями. Без их помощи не обойтись: необходим опытный взгляд со стороны, хороший консультант, а лучше несколько. Плюс, как уже говорилось, спутник, будучи технически сложным объектом, должен пройти ряд испытаний и согласований. А для всего этого нужна база.

Во время своей двухлетней миссии спутник NEA Scout приблизится к исследуемому астероиду на солнечном парусе

Создание наноспутника — дело затратное, но осуществимое. По разным оценкам, вам потребуется от 50 000 до 100 000 долларов. Необходимо изготовить корпус, купить электронные компоненты, оплатить труд специалистов. Где взять деньги? У родителей не попросишь, по друзьям такую сумму не насобираешь. Но варианты есть.

Средняя стоимость запуска CubeSat в 2012 году оценивалась в 40 тысяч долларов. Но в то же время в рамках проектов NASA стоимость запуска может быть вдое меньше.

Если сумма не очень большая, можно запустить краудфандинговую кампанию, как сделали, например, создатели российского спутника «Маяк». Или попробовать найти инвестора и убедить его, что ваш проект классный и к тому же потенциально прибыльный. Можно подать заявку на грант от космических организаций. Можно стать исполнителем заказа частной фирмы, но для этого требуется опыт. Самый дешёвый и простой вариант — ­ сделать спутник в образовательном учреждении, например вузе или школе, а может, вообще в лагере, где есть космическая смена.

Модульность конструкции и относительная дешевизна малых спутников вскоре сделают их запуск общедоступным развлечением. По оценкам экспертов, лет через пять — десять позволить себе спутник сможет любая школа. А через двадцать — любой человек.

Уже сейчас с мобильного телефона можно заказать все комплектующие для спутника прямо на дом. После закупки компонентов начинается основной процесс — сборка. Вам нужно арендовать помещение с оборудованием (например, фрезерными станками и 3D-принтерами). Для этой цели подойдут фаб­лабы университетов, лаборатории, дедушкин гараж, в конце концов (главное — соблюдать технику безопасности!). Найдите помещение с оборудованием и собирайте спутник. Только помните: сразу несколько штук. Почему? Часть из них придёт в негодность во время испытаний.

Инженеры устанавливают датчики температуры на внутренние компоненты спутника для тестирования в полевых условиях

Получив документ, в котором написано: «Испытания успешно пройдены, можно запускать», можете приступать к поиску оператора — организации, которая выведет ваш космический аппарат на орбиту. Учтите, чем больше он весит, тем дороже процедура. Но если спутник образовательный, вы можете избежать этих расходов. У «Роскосмоса», например, есть программа, предусматривающая бесплатный запуск нескольких аппаратов, сделанных по заказу учебных заведений Российской Федерации.

Приблизительно за месяц до старта нужно приехать на космодром, чтобы установить аппарат в контейнер. Есть два варианта выведения наноспутника на орбиту: запуском-выбросом из специального контейнера с ракеты-носителя или руками космонавтов во время работы в открытом космосе с борта МКС. Большая часть наноспутников летает на той же орбите, что и МКС (примерно 400 км, максимум 600). Хотя есть два кубсата (MarCO), которые летят к Марсу. Управляются небольшие спутники благодаря гиродинам — маховикам, применяемым для стабилизации устройства и предотвращения его закрутки.

Корректировать траекторию можно за счёт вращения спутника: своим корпусом он способен как тормозить, так и ускоряться. На больших спутниках орбиту меняют с помощью двигателей, но на малые аппараты их почти не ставят: технология миниатюрных двигателей пока не очень развита. Однако есть кубсаты, которые перемещаются за счёт холодного газа, химических реакций или электрической силы.

27 февраля 2015 года с МКС была запущена серия небольших экспериментальных спутников CubeSat. Пуск произведён с помощью специального устройства, смонтированного на японском экспериментальном модуле JEM.

Если аппарат готов, приступайте к испытаниям — от них зависит, полетит спутник в космос или нет. Обычно происходит так: вы собираете свой летательный аппарат, испытываете его, что-то ломается или обнаруживается ошибка — процесс начинается заново. Необходимо проверить, как работают все системы по отдельности и в совокупности, стоимость ошибки велика. Конструк­ция должна выдерживать большие перегрузки и вибрации, возникающие при выходе на орбиту. Речь не только о том, чтобы спутник не развалился, но и о том, чтобы не отошли контакты.

На вибрационном стенде спутник тестируют на перегрузки (как во время настоящего полёта): колебания, ускорения, удары. Затем проводят термовакуумное испытание (может длиться несколько дней): получение данных со спутника тестируют в вакууме и с перепадами температур на контактной поверхности. Параллельно можно проверить электромагнитную совместимость оборудования. Всё это очень трудоёмкие процессы. Но можно запустить спутник в стратосферу — условия там максимально приближены к космическим.

Ракета «Минотавр-1» среди прочего доставит на орбиту 11 небольших спутников в рамках четвёртого учебного запуска по программе NASA «Наносателлит» (ELaNa)

Счастливый день настал: ракета взлетела, спутник выведен на орбиту — вас можно поздравить. Что дальше? Чтобы спутник передавал сигналы, надо выкупить определённые радиочастоты обычного УКВ-диапазона в Министерстве связи. Многие вузы в своих стенах создают центр управления полётами — специа­лизированное помещение со множеством больших экранов и рабочими местами, где принимают сигналы аппарата.

Спутники-близнецы MarCO-A и MarCO-B будут обслуживать исследовательский посадочный аппарат с сейсмометром InSight, предназначенным для изучения строения и состава Марса

Предположим, всё идёт как нельзя лучше: спутник вышел на расчётную орбиту, стабилизировался, включился и заработал. Что делаете вы? Запрограммировав станцию на приём данных в нужное время, сидите и ждёте, когда аппарат пролетит мимо. А дальше принимаете и обрабатываете сигналы. Иными словами, команда инженеров может выдохнуть — на вахту заступают учёные. Но это уже другая история.

Первый эстонский спутник ESTCube-1 — единственный в мире, использующий электрический парус. Стоимость аппарата составила 70 тысяч евро.

Если ваш спутник не заработал на орбите (такое тоже бывает), не грустите! Вы запустили в космос аппарат, а этим далеко не каждый может похвастаться. Нужно собрать как можно больше данных о запуске и попытаться найти причины сбоя. Ведь именно так и развивается ракетостроительная индустрия — учится на ошибках.

Читайте также:  Как сделать самому аккумуляторную батарею

Материал подготовлен при участии заведующего лабораторией «Космические системы» образовательного центра «Сириус» Ивана Шекова и инженера «НПО Машиностроения» Дмитрия Галкина

источник

Многие инженеры-энтузиасты всегда мечтали собрать свой собственный мини-спутник. Теперь у них появилась такая возможность. Хотя хобби это весьма затратное. Ведь стоит набор для сборки спутника от 5999 долларов и выше.

Ещё в 2013 году зародился проект PocketQube, нацеленный на создание специальных наборов для сборки собственных спутников в домашних условиях. Была запущена Kickstarter-кампания, которая успешно завершилась 1 ноября 2013 года и стала отправной точкой создания первого такого набора.

Набор PocketQube Kit v1.0 предлагает любому желающему все необходимые компоненты для сборки, модификации и настройки своего собственного мини-спутника. Этот набор, по сути, является лишь первым шагом к доступности подобных конструкторов в будущем.

В набор входит скелетный каркас Alba Orbital, выполненный из алюминия, который используется в аэрокосмической промышленности. Покупатель может выбрать один из трёх вариантов каркаса, состоящий из одной, двух или трёх ячеек. Всё зависит от того, сколько оборудования вы хотите разместить внутри спутника. В зависимости от количества ячеек, каркас весит от 69 до 151 грамма.

Следующей составляющей набора является трансиверная радиостанция (приёмопередатчик) MiniSatCom, разработанный силами компании Radiobro. Трансивер предлагается в двух вариантах: работающий на частотах 420-450 МГц и 902-928 МГц. Разумеется, трансивер полностью совместим с интерфейсом остальных компонентов, входящих в набор.

Материнская плата LabSat для инсталляции в неё остальных компонентов и связи их между собой. Плата эта позволяет избежать использования проводов, перемычек и лишних разъёмов. Пользователь может максимально эффективно настроить плату и все её компоненты под себя, благодаря тому, что в плату изначально вмонтирован микропроцессор, позволяющий взаимодействовать с ней. Также на плате присутствует и удобный USB-разъём. Помимо всего прочего, плата защищена от всяческих попыток злоумышленников получить к ней удалённый доступ или перехватить ценные данные.

Бортовой компьютер использует микроконтроллер TI MSP430, который работает в режиме низкого энергопотребления и подвержен очень гибкой настройке. В компьютер встроены датчик температуры, часы реального времени (RTC), акселерометр, гироскоп и магнитометр. Флеш-память компьютера легко может быть перепрошита новым софтом на ваш выбор. Собранные данные хранятся на SD-карте.

Помимо стандартной минимальной комплектации, которая обойдётся вам в 5999 долларов, вы можете дополнительно приобрести и другие элементы спутника на ваш выбор. К примеру, вы можете докупить солнечные батареи, чтобы ваш спутник мог подпитываться от солнечного света.

Оформить предзаказ на набор PocketQube Kit v1.0 вы можете на официальном сайте проекта.

источник

4 октября 1957 года СССР вывел на орбиту Земли первый искусственный спутник. Спутник получил название ПС-1, а на орбиту его выводила ракета-носитель Р-7, с космодрома Байконур. Тогда этот космодром именовали научно-исследовательским полигоном министерства обороны СССР.

Сам спутник был небольшим, его диаметр составляет 58 сантиметров, а весил спутник 83,6 килограмма. ПС-1 оснастили четырьмя антеннами (благодаря которым он и получил свой узнаваемый внешний вид), с целью передачи сигналов. Устройство состояло из двух отполированных алюминиевых (вернее, использовался сплав алюминия) полусфер, которые были соединены между собой болтами. Края герметизировались резиновой прокладкой.

Внутри спутника размещался блок питания (серебряно-цинковые аккумуляторы, вес которых составлял 50 килограммов), а также передатчик, вентилятор, система терморегулирования, различные датчики.

Практически сразу же после отделения спутника от второй ступени ракеты-носителя ПС-1 начал передавать сигнал, который был услышан не только специалистами, но и радиолюбителями практически всех стран. С этого момента и начался отсчет космической эры человечества. С тех пор случится много чего, будут и удачи, и катастрофы. Но победных проектов все же больше.

А вид летящей точки на фоне звёзд производил неизгладимое впечатление на людей во всём мире и служил лучшим доказательством произошедшего. Люди жадно вглядывались в ночное небо, показывая друг другу крохотную летящую точку.

Непосредственно на самом спутнике не было научной аппаратуры. Тем не менее, запуск первого спутника Земли позволил получить не только крайне важные технические данные, необходимые для дальнейшего развития космонавтики, но и ценные научные сведения.
К техническим данным относятся как работа всех составных частей ракеты-носителя «Спутник», так и проверка всех расчётов, касающихся траектории движения ракеты и спутника. Также были получены данные о работе всех систем в необычных условиях.

Наиболее любопытными оказались данные, полученные на основании наблюдений за движением первого спутника Земли и параметрами прохождения радиосигналов от него.
Астрономы и радиоинженеры вели наблюдения за тем, как трение об атмосферу влияет на траекторию движения аппарата. На основании этих данных была вычислена плотность атмосферы на орбитальных высотах. Раньше никто и никогда не делал таких измерений — просто было нечем их делать! Все наблюдения велись только с поверхности Земли. А аэростаты поднимались на очень ограниченную высоту.
Большой неожиданностью оказалось то, что на орбитальных высотах атмосфера гораздо плотнее прежних расчётных значений. Это было крайне важно для расчётов траекторий движения последующих космических аппаратов.

На спутнике был установлен радиопередатчик, который выдавал короткие импульсы на двух длинах волн — 20,005 и 40,002 МГц. Длительность сигналов была 0,3 с. Благодаря этому, появилась возможность немного изучить верхние слои ионосферы Земли, следя за прохождением сигналов через неё.
Все более ранние наблюдения ионосферы Земли велись только с её поверхности и выводы основывались на отражении сигналов от нижней части ионосферы. Теперь же появились и данные о прохождении сигналов с известными начальными характеристиками сквозь неё.

Кажется странным, что первый искусственный спутник в истории человечества был способен только на обычный «радиописк». Он не мог передать никакой информации о своём полёте.
И это при том, что уже почти два года существовала целая правительственная програма по созданию космической лаборатории.
Дело в том, что в это время между СССР и США шла настоящая космическая гонка — кто первым запустит первый искусственный спутник Земли.
Поступили сведения, что США готовят запуск первого спутника в следующем, 1958 году. Стояла задача выйти в космос первыми. Подготовка лаборатории требовала времени, а запуск простейшего спутника мог быть произведён быстро. Этим и объясняется устройство первого спутника, который кстати носил кодовое имя ПС-1 (простейший спутник №1).
Задача первыми выйти в космос была выполнена.

А уже 3-го ноября 1957 года Советский Союз запустил второй спутник Земли, уже со множеством научной аппаратуры и первым в мире животным-космонавтом — собакой Лайкой.
США запустили свой спутник только в феврале следующего года. Так что, и первая космическая научная лаборатория тоже была советской.

источник

«Спутник-1» — первый спутник Земли в истории человечества, он был запущен в Советском Союзе 4 октября 1957 года, с полигона Тюра-Там, который впоследствии стал космодромом Байконур.
Первый спутник Земли также обозначавшийся как ПС-1 (простейший спутник №1) был выведен на орбиту с помощью ракеты-носителя «Спутник», которая была разработана на основе межконтинентальной баллистической ракеты «Р-7».

Полёт первого спутника Земли продолжался 90 дней, с течение которых он сделал 1440 витков вокруг нашей планеты.
Над созданием спутника трудился коллектив видных советских учёных во главе с С. П. Королёвым: М. В. Келдыш, М. К. Тихонравов, Н. С. Лидоренко и другие.

Запуск первого спутника Земли на полигоне Тюра-Там (Байконур):
Сам спутник находится под головным конусовидным обтекателем этой ракеты.

Запуск первого спутника Земли имел воистину огромное значение для всего мира. Полёт первого спутника вокруг Земли наглядно показал людям, что небо не твёрдое и что полёт в Космос вообще возможен.
Смешно звучит?
Но, вы только вдумайтесь — в то время действительно не было никаких наглядных доказательств, были одни только расчёты и уверения учёных! Человек ещё ни разу не выходил за пределы атмосферы нашей родной планеты.

Излишне говорить, какое значение имело то, что именно СССР первым запустил спутник в Космос и что этот запуск был удачным. Политический вес этого события трудно переоценить — всё население планеты увидело, на что способны советская наука и техника. Западные газеты взахлёб писали об этом событии.
Тысячи людей собирались около аппаратуры радиолюбителей, чтобы послушать знаменитое «бип-бип-бип. »

А вид летящей точки на фоне звёзд производил неизгладимое впечатление на людей во всём мире и служил лучшим доказательством произошедшего. Люди жадно вглядывались в ночное небо, показывая друг другу крохотную летящую точку.

Рассказывать об этом можно долго, но небольшая статья просто не позволяет этого сделать.

Непосредственно на самом спутнике не было научной аппаратуры. Тем не менее, запуск первого спутника Земли позволил получить не только крайне важные технические данные, необходимые для дальнейшего развития космонавтики, но и ценные научные сведения.
К техническим данным относятся как работа всех составных частей ракеты-носителя «Спутник», так и проверка всех расчётов, касающихся траектории движения ракеты и спутника. Также были получены данные о работе всех систем в необычных условиях.

Наиболее любопытными оказались данные, полученные на основании наблюдений за движением первого спутника Земли и параметрами прохождения радиосигналов от него.
Астрономы и радиоинженеры вели наблюдения за тем, как трение об атмосферу влияет на траекторию движения аппарата. На основании этих данных была вычислена плотность атмосферы на орбитальных высотах. Раньше никто и никогда не делал таких измерений — просто было нечем их делать! Все наблюдения велись только с поверхности Земли. А аэростаты поднимались на очень ограниченную высоту.
Большой неожиданностью оказалось то, что на орбитальных высотах атмосфера гораздо плотнее прежних расчётных значений. Это было крайне важно для расчётов траекторий движения последующих космических аппаратов.

На спутнике был установлен радиопередатчик, который выдавал короткие импульсы на двух длинах волн — 20,005 и 40,002 МГц. Длительность сигналов была 0,3 с. Благодаря этому, появилась возможность немного изучить верхние слои ионосферы Земли, следя за прохождением сигналов через неё.
Все более ранние наблюдения ионосферы Земли велись только с её поверхности и выводы основывались на отражении сигналов от нижней части ионосферы. Теперь же появились и данные о прохождении сигналов с известными начальными характеристиками сквозь неё.

Кажется странным, что первый искусственный спутник в истории человечества был способен только на обычный «радиописк». Он не мог передать никакой информации о своём полёте.
И это при том, что уже почти два года существовала целая правительственная програма по созданию космической лаборатории.
Дело в том, что в это время между СССР и США шла настоящая космическая гонка — кто первым запустит первый искусственный спутник Земли.
Поступили сведения, что США готовят запуск первого спутника в следующем, 1958 году. Стояла задача выйти в космос первыми. Подготовка лаборатории требовала времени, а запуск простейшего спутника мог быть произведён быстро. Этим и объясняется устройство первого спутника, который кстати носил кодовое имя ПС-1 (простейший спутник №1).
Задача первыми выйти в космос была выполнена.

А уже 3-го ноября 1957 года Советский Союз запустил второй спутник Земли, уже со множеством научной аппаратуры и первым в мире животным-космонавтом — собакой Лайкой.
США запустили свой спутник только в феврале следующего года. Так что, и первая космическая научная лаборатория тоже была советской.

Старт ракеты-носителя 4 октября 1957 г.
в 19:28:34 по Гринвичу
Окончание полёта спутника 4 января 1958 г.
Масса аппарата 83,6 кг
Размеры 58 сантиметров. наибольший диаметр
Период обращения 96,7 минут.
Перигей 228 км. от ближашей точки орбиты
до поверхности Земли
Апогей 947 км. от самой удалённой точки
орбиты до поверхности Земли
Количество витков 1440

Как потом стало ясно из расшифровки телеметрии, от неудачи нас отделяли буквально считанные доли секунды.
На 16 секунде полёт произошёл сбой в системе подачи топлива, что привело к повышенному расходу керосина. Поэтому главный двигатель проработал на одну секунду меньше расчётного времени. Этой секунды могло не хватить для разгона спутника до первой космической скорости и он бы упал на Землю.
Секунда на завершающем шаге рзгона очень важна. Из-за этой секунды спутник был выведен на орбиту, которая была на целых 90 километров ниже расчётной высоты!

Как бы то ни было, первый спутник Земли был успешно выведен на орбиту.
Через 90 дней полёта, 4-го января 1958 года первый спутник Земли вошёл в плотные слои атмосферы и сгорел. На выставках показывались уже только его копии.

Читайте также:  Как самому сделать трафарет для потолка

Кстати, надо всё-же сказать, что сам первый спутник был не виден с Земли. Та яркая точка, которую наблюдал весь мир — это гораздо большая по размерам разгонная ступень от ракеты-носителя. Эта ступень некоторое время летела рядом со спутником и служила дополнительным ориентиром для наблюдения с Земли за траекторией собственно самого спутника.
Но, эта ступень тоже являлась искусственным спутником Земли — она летела наравне с ПС-1! Так что всё было по-честному 🙂

Макет устройства первого искусственного спутника Земли на выставке, посвященной 40-ой годовщине запуска первого спутника. Москва, 3 октября 1997 года.

Устройство первого спутника Земли было довольно простым. Внешне он состоял из металлического шара диаметром 58 сантиметров, с 4-мя длинными антеннами, направленными «назад» относительно направления полёта. Оболочка шара разделялясь на две полусферы, открывая доступ к начинке спутника. Одна пара антенн была длиной 2,7, вторая — 2,4 метра. Антенны располагались парами, с углом 70° в каждой паре. Это обеспечивало равномерное распространение радиосигнала во все стороны, ведь опыта приёма радиопередач из космоса ещё не было.

Внутреннее устройство Спутника-1:
Легко заметить, что на борту спутника почти ничего особенного не было — только радиопередатчик. О причинах этого было рассказано выше.
Спутник-1 располагался в головной части ракеты-носителя, под обтекателем.
Внутри спутника находились: радиопередатчик и батарея для него, вентилятор с термореле и воздуховодом системы управления температурой, устройство бортовой электроавтоматики. Также были датчики температуры и давления. Ну и наконец электрические провода, которыми всё это соединялось воедино.

Наглядно представить себе размеры первого спутника Земли можно по этому снимку:

Момент отделения спутника от головного обтекателя смоделирован на этом снимке: Обратите внимание, что на конусе напротив антенн предусмотрены выступы, которые соответствуют местам крепления антенн к спутнику.
Собственно, это ни о чём особо не говорит, просто любопытная деталь.

Теперь, глядя на современные орбитальные и межпланетные станции, на всю их сложность и возможности, помните, что дорогу им проложил один маленький ПС-1, первый искусственный спутник Земли, запущенный в стране Советов всего через 12 лет после того, как отгремела война.
Нет ничего невозможного, когда есть стремление к созиданию!

Использованы снимки из книги Антона Первушина «108 минут, изменившие мир». 

источник

Фотография первого в мире искусственного спутника Земли

Мы давно привыкли, что живем в эпоху освоения космоса. Однако, наблюдая сегодня за огромными многоразовыми ракетами и космическими орбитальными станциями многие не осознают, что первый запуск космического аппарата состоялся не так давно – всего 60 лет назад.

Первый искусственный спутник Земли был запущен 4 октября 1957 года.

Кто запустил первый искусственный спутник Земли? – СССР. Этот вопрос имеет большое значение, так как это событие дало начало так называемой космической гонке между двумя сверхдержавами: США и СССР.

Как назывался первый в мире искусственный спутник Земли? – так как подобные аппараты ранее не существовали, советские ученые посчитали, что название «Спутник-1» вполне подходит для данного аппарата. Кодовое обозначение аппарата – ПС-1, что расшифруется как «Простейший Спутник-1».

Внешне спутник имел довольно незамысловатый вид и представлял собой алюминиевую сферу диаметром 58 см к которой были прикреплены крест-накрест две изогнутые антенны, позволяющие устройству равномерно и во всех направлениях распространять радиоизлучение. Внутри сферы, сделанной из двух полусфер, скрепленных 36 болтами, располагались 50-киллограмовые серебряно-цинковые аккумуляторы, радиопередатчик, вентилятор, термостат, датчики давления и температуры. Общая масса устройства составила 83,6 кг. Примечательно, что радиопередатчик вещал в диапазоне 20 МГц и 40 МГц, то есть следить за ним могли и обычные радиолюбители.

История первого космического спутника и космических полетов в целом начинается с первой баллистической ракеты – Фау-2 (Vergeltungswaffe-2). Ракета была разработана известным немецким конструктором — Вернером фон Брауном в конце Второй мировой войны. Первый тестовый запуск прошел в 1942-м году, а боевой – 1944-м., всего было выполнено 3225 запусков в основном по территории Великобритании. После войны Вернер фон Браун сдался армии США, в связи с чем возглавил Службу проектирования и разработки вооружения в США. Еще в 1946-м году немецкий ученый представил Минобороны США доклад «Предварительная конструкция экспериментального космического корабля, вращающегося вокруг Земли», где отметил, что в течение пяти лет может быть разработана ракета, способная вывести на орбиту подобный корабль. Однако финансирование проекта не было одобрено.

13-го мая 1946-го года Иосиф Сталин принял постановление о создании ракетной отрасли в СССР. Главным конструктором баллистических ракет был назначен Сергей Королев. Следующие 10 лет учеными были разработаны межконтинентальные баллистические ракеты Р-1, Р2, Р-3 и др.

В 1948-м году ракетный конструктор Михаил Тихонравов провел доклад для научных кругов о составных ракетах и результатах расчетов, согласно которым разрабатываемые 1000-киллометровые ракеты могут достигать больших расстояний и даже вывести на орбиту искусственный спутник Земли. Однако, подобное заявление подверглось критике и не было воспринято всерьез. Отдел Тихонравова в НИИ-4 был расформирован в связи с неактуальными работами, однако позже усилиями Михаила Клавдиевича вновь собран в 1950-м году. Тогда Михаил Тихонравов уже прямо заговорил о миссии по выводу спутника на орбиту.

После создания баллистической ракеты Р-3 на презентации были представлены ее возможности, согласно которым ракета была способна не только поражать цели на расстоянии 3000 км, но и вывести спутник на орбиту. Так к 1953-му году ученым все же удалось убедить высшее руководство в том, что вывод орбитального спутника возможен. А у руководителей вооруженных сил возникло понимание перспективности разработки и запуска искусственного спутника Земли (ИСЗ). По этой причине в 1954-м году было принято постановление о создании отдельной группы в НИИ-4 с Михаилом Клавдиевичем, которая занималась бы проектированием спутника и планированием миссии. В том же году группа Тихонравова представила программу освоения космоса, от запуска ИСЗ, до высадки на Луну.

В 1955-м году делегация политбюро во главе Н. С. Хрущевым посетила Ленинградский металлический завод, где было окончено строительство двухступенчатой ракеты Р-7. Впечатление делегации вылилось в подписание постановления о создании и выводе на земную орбиту спутника в ближайшие два года. Проектирование ИСЗ началось в ноябре 1956-го года, а в сентябре 1957-го года «Простейший Спутник-1» успешно прошел испытания на вибростенде и в термокамере.

Однозначно на вопрос «кто изобрел Спутник-1?» — ответить нельзя. Разработка первого спутника Земли происходила под руководством Михаила Тихонравова, а создание ракеты-носителя и вывод спутника на орбиту – под началом Сергея Королева. Однако над обоими проектами трудилось немалое число ученых и научных сотрудников.

Запуск первого спутника ПС-1

В феврале 1955-го года высшее руководство утвердило создание Научно-исследовательского испытательного полигона №5 (позже Байконур), который должен был располагаться в Казахстанской пустыне. На полигоне проводились испытания первых баллистических ракет типа Р-7, но по результатам пяти опытных запусков стало ясно, что массивная головная часть баллистической ракеты не выдерживает температурной нагрузки и требует доработки, что займет около полугода. По этой причине С. П. Королев запросил от Н. С. Хрущева две ракеты для экспериментального запуска ПС-1. В конце сентября 1957-го года на Байконур прибыла ракета Р-7 с облегченной головой частью и переходом под спутник. Была снята лишняя аппаратура, в результате чего масса ракеты была уменьшена на 7 тонн.

2-го октября С. П. Королев подписал приказ о летных испытаниях спутника и направил уведомление о готовности в Москву. И хотя от Москвы не пришло никаких ответов, Сергей Королев решил произвести вывод ракеты-носителя «Спутник» (Р-7) с ПС-1 на стартовую позицию.

Причина, по которой руководство потребовало вывод спутника на орбиту именно в этот период заключается в том, что с 1 июля 1957 по 31 декабря 1958 проводился так называемый Международный геофизический год. Согласно нему, в указанный период 67 стран совместно и по единой программе проводили геофизические исследования и наблюдения.

Дата запуска первого искусственного спутника — 4 октября 1957-й год. Кроме того, в тот же день проходило открытие VIII международного конгресса астронавтики в Испании, Барселона. Руководители космической программы СССР не раскрывались общественности по причине секретности проводимой работы, о сенсационном запуске спутника конгрессу сообщил академик Леонид Иванович Седов. Поэтому именно советского физика и математика Седова мировая общественность долго считала «отцом Спутника».

Инфографика по спутнику ПС-1

В 22:28:34 по московскому времени произошел запуск ракеты со спутником с первой площадки НИИП № 5 (Байконур). Спустя 295 секунд центральный блок ракеты и спутник были выведены на эллиптическую орбиту Земли (апогей – 947 км, перигей – 288 км). Еще через 20 секунд ПС-1 отделился от ракеты и подал сигнал. Это были повторяющиеся сигналы «Бип! Бип!», которые ловили на полигоне 2 минуты, до тех пор, пока «Спутник-1» не скрылся за горизонтом. На первом витке аппарата вокруг Земли Телеграфное агентство Советского Союза (ТАСС) передало сообщение об успешном запуске первого в мире ИСЗ.

После приема сигналов ПС-1 начали поступать подробные данные об аппарате, который, как оказалось, был близок к тому, чтобы не достичь первой космической скорости и не выйти на орбиту. Причиной этому послужил непредвиденный отказ системы управления подачи топлива, из-за чего один из двигателей запаздывал. От неудачи отделяли доли секунды.

Однако, ПС-1 все же успешно достиг эллиптической орбиты, по которой двигался в течение 92-х дней, при этом выполнил 1440 оборотов вокруг планеты. Радиопередатчики аппарата работали на протяжении первых двух недель. Что стало причиной гибели первого спутника Земли? — Потеряв скорость о трение атмосферы, «Спутник-1» начал снижаться и полностью сгорел в плотных слоях атмосферы. Примечательно, что многие могли наблюдать некий блестящий объект, движущийся по небу в тот период. Но без специальной оптики блестящий корпус спутника нельзя было заметить, и на самом деле этим объектом была вторая ступень ракеты, которая также вращалась на орбите, вместе со спутником.

Первый спутник. Рисунок художника.

Первый запуск искусственного спутника Земли в СССР произвел небывалый подъем гордости за свою страну и сильный удар по престижу США. Отрывок из публикации «Юнайтед пресс»: «90 процентов разговоров об искусственных спутниках Земли приходилось на долю США. Как оказалось, 100 процентов дела пришлось на Россию…». И несмотря на ошибочные представления о технической отсталости СССР, первым спутником Земли стал именно советский аппарат, к тому же его сигнал мог отслеживаться любым радиолюбителем. Полет первого спутника Земли ознаменовал начало космической эры и запустил космическую гонку между Советским Союзом и США.

Спустя всего 4 месяца, 1-го февраля 1958-го года США запустили свой спутник «Эксплорер-1», который был собран командой ученого Вернера фон Брауна. И хотя он был в несколько раз легче ПС-1 и содержал 4,5 кг научной аппаратуры, он все же был вторым и уже не так повлиял на общественность.

Запуск данного ПС-1 преследовал несколько целей:

  • Тестирование технической способности аппарата, а также проверка расчетов, принятых для успешного запуска спутника;
  • Исследование ионосферы. До запуска космического аппарата радиоволны, посланные с Земли, отражались от ионосферы, исключая возможность ее изучения. Теперь же ученые смогли начать исследование ионосферы посредством взаимодействия радиоволн, излучаемых спутником из космоса и идущих через атмосферу к поверхности Земли.
  • Расчет плотности верхних слоев атмосферы при помощи наблюдения за темпом замедления аппарата вследствие трения об атмосферу;
  • Исследование влияния космического пространства на аппаратуру, а также определения благоприятных условий для работы аппаратуры в космосе.

Слушать звук Первого спутника

И хотя на спутнике не было никакой научной аппаратуры, слежение за его радиосигналом и анализ его характера давал много полезных результатов. Так группа ученых из Швеции проводила измерения электронного состава ионосферы, опираясь на эффект Фарадея, гласящий об изменении поляризации света при прохождении его через магнитное поле. Также группа советских ученых из МГУ разработала методику наблюдения за спутником с точным определением его координат. Наблюдение за данной эллиптической орбитой и характером ее поведения позволили определить плотность атмосферы в области орбитальных высот. Неожиданно повышенная плотность атмосферы в указанных областях подтолкнула ученых к созданию теории торможения спутников, что внесло свою лепту в развитие космонавтики.

Памятник создателям первого в мире искусственного спутника Земли в Москве

В журнале «Радио» для радиолюбителей были заранее напечатаны инструкции по приему «сигнала из космоса» от ПС-1;

Читайте также:  Как сделать самому вазу из дерева
  • Расчеты координат спутника с привязкой по времени занимали у ученых 30-60 минут. Сегодня аналогичные вычисления посредством компьютера проводились бы за 1-2 секунды;
  • Прежде чем американцы запустили свой первый спутник, Советский Союз 3-го ноября 1957-го года запустил на орбиту свой второй космический аппарат – «Спутник-2». Причем на борту спутника впервые находилось живое существо – беспородная собака-космонавт Лайка. И хотя предусматривалось, что собака проживет около недели на орбите Земли, животное погибло через 5-7 часов после запуска в результате перегрева.
  • К 50-летию Спутника-1, 4-го октября 2007-го года в наукограде Королев на проспекте Космонавтов был установлен памятник «Первому искусственному спутнику Земли».
  • Старт космической гонки вынудил США создать НАСА.
  • Запуск Спутника-1 повлиял на создание DARPA и Интернета. В ответ на успешный запуск ПС-1 с дальнейшей перспективой создания новой сети вещания, США в 1957-м году создают Агентство передовых исследовательских проектов (ARPA). В случае войны США также хотели иметь надежную систему передачи информации на дальние расстояния, в результате чего начали разработку компьютерной сети. 5-го декабря 1969-го года сеть ARPANET объединила три университета и исследовательский центр. Позже эта технология была реализована в CERN и переросла в итоге во Всемирную паутину.

  • Видео о первом спутнике.

    источник

    Большой серьезный спутник, например из тех, что обслуживают систему GPS, весит полторы-две тонны, а стоимость его изготовления и вывода на орбиту превышает $100 млн. Порядок цен космический, и тут уж ничего не поделаешь — даже килограмм глины, отправленный в космос, станет почти без преувеличения золотым. Но если этих килограммов чего бы то ни было не так много, то запуск космического аппарата может стать куда более бюджетным мероприятием.

    Первый в мире искусственный спутник Земли хоть и не содержал в себе ничего, кроме радиопередатчика, весил солидные 83,6 кг. С тех пор электроника шагнула вперед, на порядки миниатюризировалась, и вот уже спутники, весящие от нескольких килограммов до нескольких граммов, могут, как оказывается, быть вполне функциональными. Как только это выяснилось, освоение космоса перестало быть исключительной прерогативой государственных ведомств и огромных ракетно-космических корпораций: наступило время студенческого и любительского спутникостроения, вместе с которым мало-помалу поднимается вторая волна космической романтики. И Россию эта волна также не обошла стороной.

    CubeSat (Спутник-кубик) — наноспутник, разработанный Политехническим университетом штата Калифорния и Стэнфордским университетом специально для студенческих и любительских экспериментов в космосе. Его размеры 10 x 10 x 10 см, а вес — 1.3 кг. В наши дни комплект для сборки наноспутника можно купить в магазине.

    Можно ли было себе представить лет 20−40 назад, что создание орбитального космического аппарата станет темой студенческой работы? Сегодня студенты кафедры конструирования электронно-вычислительных средств Юго-Западного государственного университета (Курск) создают аппаратуру для отправки на орбиту. «Мы не единственный университет в России, в стенах которого разрабатываются спутники, — рассказывает начальник Центра разработки малых космических аппаратов доцент Валерьян Пиккиев. — Есть аппараты, сделанные в МГТУ им. Баумана, МГУ, Военно-космической академии им. А.Ф. Можайского, однако это все-таки уже серьезные профессиональные работы, в которых задействован весь научный потенциал наших ведущих вузов. У нас же и оборудование, и эксперименты, которые будут проводиться с помощью этой аппаратуры, — все придумывают сами студенты».

    Кафедра конструирования электронно-вычислительных средств ЮЗГУ была создана в 1965 году и занималась разработкой различной электроники для отечественных предприятий, в том числе приборов военного назначения. Среди них были и вакуумметры — аппараты для измерения концентрации частиц в разреженных средах. Эти устройства вызвали интерес со стороны предприятий ракетно-космической отрасли — НПО им. Лавочкина и РКК «Энергия».

    К этому моменту «Энергия» уже имела свою собственную программу создания и запуска малых спутников. «Все началось 15 лет назад, — рассказывает ведущий специалист РКК «Энергия» Сергей Самбуров. — В 1997 году космонавт Валерий Поляков предложил отметить 40-летний юбилей первого спутника запуском его уменьшенной копии. Предложение было принято, причем в создании аппарата принимали участие (пусть символическое) школьники из Кабардино-Балкарии и французского Реюньона. Спутник не только внешне походил на свой прообраз, но и воспроизводил его «начинку», включая передатчик сигнала «бип-бип-бип». Разумеется, для этого аппарата отдельного носителя не использовали — его доставили кораблем «Прогресс» на орбитальную станцию «Мир», а там во время планового выхода в космос «забросили» в космическое пространство».

    Запуск уменьшенной копии первого ИСЗ вызвал настоящий ажиотаж среди радиолюбителей во всем мире, особенно среди тех, кто с ностальгией вспоминал молодость и радиосигнал спутника 1957 года. Тему было решено продолжить, и на следующий год был запущен еще один радиолюбительский спутник, который транслировал в эфир песни и обращался к аудитории планеты Земля на разных языках. Технология запуска спутников с борта орбитальных станций совершенствовалась, и в 2002 году РКК «Энергия» совместно с Институтом космических исследований отправила на орбиту небольшой аппарат «Колибри» с научной аппаратурой. Запускали его так: при отстыковке «Прогресса» от МКС его люк оставался незадраенным. Внутри корабля был установлен контейнер, который при пережигании пиропатроном удерживающего шнура буквально выстреливал спутником.

    А в 2006 году РКК «Энергия» совместно с представителями американской радиолюбительской корпорации AMSAT дали жизнь одному из самых оригинальных проектов в истории освоения космоса. Новый радиолюбительский спутник было решено сделать на основе отслужившего свое скафандра «Орлан-М», который использовался как платформа для монтажа доставленной на МКС аппаратуры. Научного оборудования на спутнике «Радиоскаф-1» (он же SuitSat-1) не было — только антенны (установленные на шлеме), радиостанция, блок «дигитолкер» для трансляции звуковых программ, два фотоаппарата (цифровой и пленочный) и аккумулятор. Интересно, что штатный аккумулятор от скафандра не подошел — он рассчитан на небольшое количество циклов зарядки-разрядки, а спутник, испытывающий на орбите перепады температур от минус 100 до плюс 100 градусов Цельсия, израсходовал бы ресурс такого устройства очень быстро. Тем более что «Радиоскаф-1» не имел солнечных батарей и полагался только на ресурс аккумулятора. В феврале космонавт МКС Валерий Токарев, выйдя в открытый космос, оттолкнул от себя старый скафандр с новой начинкой, и спутник отправился в двухнедельную миссию.

    Несмотря на всю экзотичность проекта, скафандр оказался весьма интересной платформой для малых спутников. Во‑первых, его не надо доставлять на МКС, так как он уже туда доставлен. Во‑вторых, продолговатая форма открывает возможности пассивной стабилизации за счет неравномерного распределения груза (более тяжелая часть всегда будет «тяготеть» к Земле, и спутник не будет вращаться вокруг своей оси). Наконец, в скафандре есть баллон, в котором может содержаться кислород или другой газ под давлением в 100 атм. Это можно использовать для развертывания надувных элементов спутника.

    Однако пока в РКК «Энергия» зрел план «Радиоскафа-2» — снова на базе скафандра, случилась неувязка. Очередной старый скафандр, на котором хотели смонтировать спутник, пришлось выкинуть с МКС, не дожидаясь готовности аппаратуры для второго спутника: уж очень место в дефиците. «Ждать еще пять лет, пока состарится новый скафандр, пришедший на замену старому, мы не могли, — говорит Сергей Самбуров. — Поэтому, как мы шутим, пришлось вместо «Радиоскафа» сделать «Радиошкаф», то есть конструкцию в виде прямоугольного параллелепипеда с размерами 500 x 500 x 300 мм. Проект приурочили к полувековому юбилею полета Гагарина, а сам аппарат получил имя «Кедр» в честь позывного первого космонавта планеты». Было у него и еще одно имя — ARISSat-1, по названию международной ассоциации радиолюбителей, работающих со спутниками, которые запущены с борта МКС. Спутник делали в международном сотрудничестве, но также впервые активное участие в его создании приняла кафедра конструирования электронно-вычислительных систем ЮЗГУ, которая стала полноправным партнером проекта «Радиоскаф» в 2010 году. Здесь и пригодилось научное оборудование, сконструированное курскими студентами, — те самые вакуумметры. Конечно же, создатели «Кедра» не забыли о радиолюбителях, для которых была предусмотрена трансляция сообщений на разных языках мира. Спутник отправили на орбиту с МКС 3 августа 2011 года, и он успешно выполнил свою миссию, в частности, произведя замеры плотности частиц в безвоздушном пространстве на орбитах разных высот.

    «Мы продолжаем работы по программе «Радиоскаф» в сотрудничестве с РКК «Энергия», которая частично финансирует нашу деятельность и берет на себя запуск студенческих и радиолюбительских аппаратов в рамках собственных программ экспериментов, — рассказывает Валерьян Пиккиев. — Очередной спутник — «Часки-1» — мы делаем совместно со студентами Технического университета из Перу. Это будет спутник в популярном в мире наноформате CubeSat (куб со сторонами 10 см, вес 1,3 кг). Научной аппаратуры на аппарате не будет, однако мы намерены испытать специально сконструированные рамки, дающие возможность пассивной стабилизации спутника по линиям магнитного поля Земли. Кроме того, на «Часки-1» установят камеры с невысоким разрешением. Они позволят делать фото земной поверхности (две камеры в видимом спектре, две инфракрасные), изображение с них окажется доступным радиолюбителям. Будем также отрабатывать командную линию на частоте 144, 430 МГц. Все это позволит нам уже в следующем совместном спутнике запускать научную аппаратуру — в частности, новое поколение наших вакуумметров, которые способны теперь регистрировать не только концентрацию частиц, но и определять их природу».

    Конечно, наноспутники можно запускать по‑разному. Есть вариант помещения кассеты со спутниками между второй и третьей ступенями ракеты, выводящей на орбиту, скажем, тяжелый спутник связи. Разрабатываются концепции двухступенчатого запуска «самолет-ракета», наподобие проекта LauncherOne компании Virgin Galactic. Однако пока существует МКС, она будет представлять собой, пожалуй, самую надежную платформу для подобных запусков, и с этой целью ею пользуются как российские космонавты, так и астронавты США и Японии. Однако и здесь человеческий фактор можно минимизировать.

    История российского студенческого и радиолюбительского спутникостроения началась в 1996 году, когда по инициативе космонавта Валерия Полякова с борта станции «Мир» была запущена уменьшенная копия первого в мире ИСЗ. Полет вызвал большой интерес радиолюбителей во всем мире.

    «Сейчас в рамках нашей программы мы делаем пушку для запуска маленьких спутников, — говорит Сергей Самбуров. — Это будет коробка размером с обувную, а внутри разместится пружина, которая по команде в нужный момент вытолкнет спутник. А это не так просто на самом деле, поскольку аппарат надо запустить в правильном направлении, придав ему при этом вращение. Если просто бросить спутник в сторону от станции, то по законам баллистики он к станции и вернется. Надо кидать по вектору движения или против вектора, но по вектору нельзя, потому что тогда спутник поднимется на более высокую орбиту и будет над станцией летать, а если станция орбиту скорректирует, может произойти столкновение. Вероятность небольшая, но она есть. Надо кидать против вектора, и тогда аппарат уходит под станцию, а затем обгоняет ее и уже никогда с ней не столкнется». Техника запуска спутника вручную достаточно сложна, и еще на Земле космонавты отрабатывают ее на тренировках в гидробассейне. Если же будет создано автоматическое устройство отстреливания спутников, то экипажу нужно будет сделать ровно две вещи: вытащить устройство наружу, в космос, а потом, по возвращении на станцию, дать команду на пуск.

    Сегодня в РКК «Энергия» создано специальное подразделение, занимающееся малыми космическими аппаратами. Главная задача его деятельности — образовательная. «Студенты, которые еще во время обучения приняли участие в создании космических аппаратов, придут к нам специалистами с опытом практического конструирования. Для нас это очень важно, — говорит Сергей Самбуров. — Кроме того, не надо думать, что малые спутники годятся только для обучения и хобби. На них можно отрабатывать технологии движения и маневрирования, системы стабилизации, работу новых приборов для вполне серьезных задач. А при сравнительно невысокой стоимости этих аппаратов ниже и цена ошибки, которая в противном случае может сгубить большой и дорогостоящий спутник или зонд».

    Остается лишь последний вопрос: не станет ли общемировое увлечение наноспутниками еще одним фактором загрязнения околоземного пространства — ведь космического мусора на орбитах и так достаточно. «Тут не о чем беспокоиться, — объясняет Валерьян Пиккиев. — Любительские спутники не относятся к орбитальным долгожителям. С высоты МКС (примерно 400 км) наши спутники летят к плотным слоям атмосферы всего полгода. Кроме того, мы изготавливаем их из таких материалов, которые легко сгорают от трения об воздух, так что ни одно из наших детищ никому и никогда на голову не обрушится.

    источник