Меню Рубрики

Как сделать переменный ток самому

Использование в повседневной жизни различных электрических приборов и устройств, работающих благодаря электроэнергии, обязывает нас иметь минимальные познания в области электротехники. Это знания, которые сохраняют нам жизнь. Ответы на вопросы о том, как из постоянного тока сделать переменный, какое напряжение должно быть в квартире и какой ток опасен, современный человек должен знать, чтобы избежать поражения и гибели от него.

Сегодня невозможно представить свою жизнь без электроэнергии. Ежедневно все население нашей планеты использует миллионы ватт электричества для обеспечения нормальной жизнедеятельности. Но очередной раз, включая электрочайник, человек не задумывается о том, какой путь пришлось проделать электричеству, чтобы он смог заварить себе утреннюю чашку ароматного кофе.

Существует несколько способов получения электричества:

  • из тепловой энергии;
  • из энергии воды;
  • из атомной (ядерной) энергии;
  • из ветровой энергии;
  • из солнечной энергии и др.

Для того чтобы понять природу возникновения электрической энергии, рассмотрим несколько примеров.

Электрический ток — это направленное движение заряженных частиц. Самый простой способ его получения — энергия природных сил.

В данном примере от энергии ветра. Природный феномен дующего с различной силой ветра люди научились использовать давно. Укрощает ветер простой ветряк, оборудованный приводом и соединённый с генератором. Генератор и вырабатывает электрическую энергию.

Излишки тока при постоянном использовании ветряка можно накапливать в аккумуляторных батареях. Выработанный постоянный экологически чистый ток в быту и производстве не применяется.

Полученный и преобразованный в переменный ток, он идет для бытового использования. Накопленные излишки электричества хранятся в аккумуляторных батареях. При отсутствии ветра запасы электричества, хранящиеся в аккумуляторах, преобразуются и поступают на нужды человека.

К большому сожалению, этот вид природной энергии, дающий возможность получать электричество, не везде имеется. Рассмотрим способ получения электричества там, где воды много.

Простейшая ГЭС, сделанная из дерева по принципу мельницы, размер которой порядка 1,5 метров, способна обеспечить электричеством, используемым и на отопление, частное подсобное хозяйство. Такую бесплотинную ГЭС сделал русский изобретатель, уроженец Алтая — Николай Ленев. Он создал ГЭС, перенести которую могут два взрослых мужчины. Все дальнейшие действия аналогичны получению электричества от ветряка.

Вырабатывают электричество и крупные электростанции и гидростанции. Для промышленного получения электричества применяют огромные котлы, дающие пар. Температура пара достигает 800 градусов, а давление в трубопроводе поднимается до 200 атмосфер. Этот перегретый пар с высокой температурой и огромным давлением поступает на турбину, которая начинает вращаться и вырабатывать ток.

То же самое происходит и на гидроэлектростанциях. Только здесь вращение происходит за счёт больших скорости и объема воды, падающей с огромной высоты.

Постоянный ток обозначается DC. На английском языке пишется как Direct Current. Он в процессе работы со временем не меняет своих свойств и направления. Частота постоянного тока равна нулю. Обозначают его на чертежах и оборудовании прямой короткой горизонтальной черточкой или двумя параллельными черточками, одна из которых пунктирная.

Используется постоянный ток в привычных нам аккумуляторах и батарейках, используемых в огромном числе различного типа устройств, таких как:

  • счетные машинки;
  • детские игрушки;
  • слуховые аппараты;
  • прочие механизмы.

Все ежедневно пользуются мобильным телефоном. Зарядка его происходит через блок питания, компактный преобразователь DC/AC, включаемый в бытовую розетку.

Электрические приборы потребляют переменный однофазный ток. Электроприборы заработают только с подключением трансформатора и выпрямителя тока. Многие производители устанавливают преобразователь DC/AC непосредственно в сам агрегат. Это намного упрощает эксплуатацию электрооборудования.

Выше говорилось, что все аккумуляторы, батарейки для фонариков, пультов телевизоров имеют постоянный ток. Чтобы преобразовать ток, существует современное устройство под названием инвертор, он с легкостью из постоянного тока сделает переменный. Рассмотрим, как это применимо в повседневности.

Бывает, что во время нахождения в автомашине человеку необходимо срочно распечатать на ксероксе документ. Ксерокс имеется, машина работает и, включив в прикуриватель переходник на инвертор, он может подключить к нему ксерокс и распечатать документы. Схема преобразователя достаточно сложна, особенно для людей, которые имеют отдаленное понятие о работе электричества. Поэтому в целях безопасности лучше не пытаться самостоятельно соорудить инвертор.

Протекая, переменный ток в течение одной секунды меняет направление и величину 50 раз. Изменение движения тока — это его частота. Обозначается частота в герцах.

У нас частота тока 50 герц. Во многих странах, например США, частота равна 60 герц. Также бывает трёхфазный и однофазный переменный ток.

Для бытовых нужд приходит электричество, равное 220 вольтам. Это действующее значение переменного тока. Но амплитуда тока максимального значения будет больше на корень из двух. Что в итоге даст 311 вольт. То есть фактическое напряжение бытовой сети составляет 311 вольт. Для изменения постоянного тока на переменный применяются трансформаторы, в которых используются различные схемы преобразователей.

Все электрические наружные сети несут по своим проводам переменный ток различного напряжения. Оно может колебаться от 330000 вольт до 380 вольт. Передача осуществляется только переменным током. Данный способ транспортировки — самый простой и дешёвый. Как из переменного тока сделать постоянный, давно известно. Поставив трансформатор в нужном месте, получим необходимое напряжение и силу тока.

Самая простая схема решения вопроса о том, как из постоянного тока сделать переменный 220 В, не существует. Это может сделать диодный мост. Схема преобразователя DC/AC имеет в своём составе четыре мощных диода. Мост, собранный из них, создает движение тока в одном направлении. Мостик срезает верхние границы переменных синусоид. Диоды собираются последовательно.

Вторая схема преобразователя переменного тока — это параллельное подключение на выход с моста, собранного из диодов, конденсатора или фильтра, который сгладит и исправит провалы между пиками синусоид.

Отлично преобразует постоянный ток в переменный инвертор. Схема его сложна. Используемые детали не из дешевого порядка. Потому и цена на инвертор немаленькая.

В повседневной жизни мы постоянно сталкиваемся на работе и в быту с электроприборами, подключенными в розетки. Ток, бегущий от электрического щита до розетки, однофазный переменный. Происходят случаи поражения электрическим током. Меры безопасности и знания о поражении током необходимы.

В чем принципиальная разница между попаданием под напряжение переменным током и постоянным? Имеется статистика, что переменный DC однофазный ток в пять раз опаснее постоянного AC тока. Поражение током, вне зависимости от его типа, само по себе отрицательный факт.

Небрежность в обращении с электроприборами может, мягко говоря, негативно сказаться на здоровье человека. Поэтому не стоит экспериментировать с электричеством, если на то нет специальных навыков.

Действие тока на человека зависит от нескольких факторов:

  • сопротивления тела самого потерпевшего;
  • напряжения, под которое попал человек.
  • от силы тока на момент контакта человека с электричеством.

С учетом всего перечисленного можно сказать, что действие переменного тока намного опаснее, чем постоянного. Имеются данные экспериментов, подтверждающие факт, что для получения равного результата при поражении сила постоянного тока должна быть в четыре — пять раз выше, чем переменного.

Сама природа переменного тока отрицательно сказывается на работе сердца. При поражении током происходит непроизвольное сокращение сердечных желудочков. Это может привести к его остановке. Особенно опасно соприкосновение с оголенными жилами людям, имеющим сердечный стимулятор.

У постоянного тока частота отсутствует. Но высокие напряжение и сила тока могут привести также к летальному исходу. Выйти из под контакта с постоянным электрическим током проще, чем из-под контакта с переменным.

Этот небольшой обзор природы электрического тока, его преобразования должен быть полезен людям, далеким от электричества. Минимальные познания в области происхождения и работы электроэнергии помогут понять суть работы обычных бытовых приборов, которые так необходимы для комфортной и спокойной жизни.

источник

  • — трансформатор;
  • — диоды ламповые или полупроводниковые;
  • — дроссель;
  • — электролитические конденсаторы;
  • — измерительные приборы;
  • — принадлежности для пайки и монтажа.

В блоках питания могут применяться как ламповые, так и транзисторные диоды.

Для питания устройств, чувствительных к колебаниям напряжения, применяется дополнительный узел, называемый стабилизатором.

Электрический ток представляет собой направленный поток электронов от одного полюса источника тока к другому. Если это направление постоянно и не меняется во времени, говорят о постоянном токе. Один вывод источника тока при этом считается плюсовым, второй – минусовым. Принято считать, что ток течет от плюса к минусу.

Классическим примером источника постоянного тока является обычная пальчиковая батарейка. Такие батарейки широко применяются в качестве источника питания в малогабаритной электронной аппаратуре – например, в пультах дистанционного управления, в фотоаппаратах, радиоприемниках и т.д. и т.п.

Переменный ток, в свою очередь, характеризуется тем, что периодически меняет свое направление. Например, в России принят стандарт, согласно которому напряжение в электрической сети равно 220 В, а частота тока составляет 50 Гц. Именно второй параметр и характеризует, с какой частотой изменяется направление электрического тока. Если частота тока равна 50 Гц, то он меняет свое направление 50 раз в секунду.

Значит ли это, что в обычной электрической розетке, имеющей два контакта, периодически меняются плюс с минусом? То есть сначала на одном контакте плюс, на другом минус, потом наоборот и т.д. и т.п.? На самом деле все обстоит немного иначе. Электрические розетки в электросети имеют два вывода: фазовый и заземляющий. Обычно их называют «фазой» и «землей». Заземляющий вывод безопасен, напряжения на нем нет. На фазовом же выводе с частотой 50 Гц в секунду меняются плюс и минус. Если коснуться «земли», ничего не произойдет. Фазового же провода лучше не касаться, так как он всегда находится под напряжением 220 В.

Одни приборы питаются от постоянного тока, другие от переменного. Зачем вообще потребовалось такое разделение? На самом деле большинство электронных приборов используют именно постоянное напряжение, даже если включаются в сеть переменного тока. В этом случае переменный ток преобразуется в постоянный в выпрямителе, в простейшем случае состоящем из диода, срезающего одну полуволну, и конденсатора для сглаживания пульсаций.

Переменный же ток используется только потому, что его очень удобно передавать на большие расстояния, потери в этом случае сводятся к минимуму. Кроме того, он легко поддается трансформации – то есть изменению напряжения. Постоянный ток трансформировать нельзя. Чем выше напряжение, тем ниже потери при передаче переменного тока, поэтому на магистральных линиях напряжение достигает нескольких десятков, а то и сотен тысяч вольт. Для подачи в населенные пункты высокое напряжение снижается на подстанциях, в результате в дома поступает уже достаточно низкое напряжение 220 В.

В разных странах приняты неодинаковые стандарты питающего напряжения. Так, если в европейских странах это 220 В, то в США – 110 В. Интересен и тот факт, что знаменитый изобретатель Томас Эдисон не смог в свое время оценить все преимущества переменного тока и отстаивал необходимость использования в электрических сетях именно постоянного тока. Лишь позже он был вынужден признать, что ошибся.

источник

Переменный ток – род тока, направление протекания которого непрерывно меняется. Становится возможным, благодаря наличию разницы потенциалов, подчиняющейся закону. В повседневном понимании форма переменного тока напоминает синусоиду. Постоянный способен изменяться по амплитуде, направление прежнее. В противном случае получаем переменный ток. Трактовка радиотехников противоположна школьной. Ученикам говорят — постоянный ток одной амплитуды.

Создание переменного тока

Начало переменному току положил Майкл Фарадей, читатели подробнее узнают ниже по тексту. Показано: электрическое и магнитное поля связаны. Ток становится следствием взаимодействия. Современные генераторы работают за счет изменения величины магнитного потока через площадь, охватываемую контуром медной проволоки. Проводник может быть любым. Медь выбрана из критериев максимальной пригодности при минимальной стоимости.

Статический заряд преимущественно образуется трением (не единственный путь), переменный ток возникает в результате незаметных глазу процессов. Величина пропорциональна скорости изменения магнитного потока через площадь, охваченную контуром.

Впервые переменным токам стали уделять внимание ввиду коммерческой ценности после появления на свет изобретений, созданных Николой Тесла. Материальный конфликт с Эдисоном отметил сильным отпечатком судьбы обоих. Когда американский предприниматель забрал назад обещания перед Николой Тесла, потерял немалую выгоду. Выдающемуся ученому не понравилось вольное обращение, серб выдумал двигатель переменного тока промышленного типа (изобретение сделал намного раньше). Предприятия пользовались исключительно постоянным. Эдисон продвигал указанный вид.

Тесла впервые показал: переменным напряжением можно достичь гораздо больших результатов. В особенности, когда энергию приходится передавать на большие расстояния. Использование трансформаторов без труда позволяет повысить напряжение, резко снижая потери на активном сопротивлении. Приемная сторона параметры вновь возвращает к исходным. Неплохо сэкономите на толщине проводов.

Сегодня показано: передача постоянного тока экономически выгоднее. Тесла изменил ход истории. Придумай ученый преобразователи постоянного тока, мир выглядел бы иначе.

Начало активному использованию переменного тока положил Никола Тесла, создав двухфазный двигатель. Опыты передачи энергии на значительные расстояния расставили факты по своим местам: неудобно переносить производство в район Ниагарского водопада, гораздо проще проложить линию до места назначения.

Школьный вариант трактовки переменного и постоянного тока

Переменный ток демонстрирует ряд свойств, отличающих явление от постоянного. Вначале обратимся к истории открытия явления. Родоначальником переменного тока в обиходе человечества считают Отто фон Герике. Первым заметил: заряды природные двух знаков. Ток способен протекать в разном направлении. Касательно Тесла, инженер больше интересовался практической частью, авторские лекции упоминают двух экспериментаторов британского происхождения:

  1. Вильям Споттисвуд лишен странички русскоязычной Википедии, национальная часть — замалчивает работы с переменным током. Подобно Георгу Ому, ученый — талантливый математик, остается сожалеть, что с трудом можно узнать, чем именно занимался муж науки.
  2. Джеймс Эдвард Генри Гордон намного ближе практической части вопроса применения электричества. Много экспериментировал с генераторами, разработал прибор собственной конструкции мощностью 350 кВт. Много внимания уделял освещению, снабжению энергией заводов, фабрик.

Считается, первые генераторы переменного тока созданы в 30-е годы XIX века. Майкл Фарадей экспериментально исследовал магнитные поля. Опыты вызывали ревность сэра Хемфри Дэви, критиковавшего ученика за плагиат. Сложно потомкам выяснить правоту, факт остается фактом: переменный ток полвека просуществовал невостребованным. В первой половине XIX-го века выдуман электрический двигатель (авторство Майкла Фарадея). Работал, питаемый постоянным током.

Никола Тесла впервые догадался реализовать теорию Араго о вращающемся магнитном поле. Понадобились две фазы переменного тока (сдвиг 90 градусов). Попутно Тесла отметил: возможны более сложные конфигурации (текст патента). Позднее изобретатель трехфазного двигателя, Доливо-Добровольский, тщетно силился запатентовать детище плодотворного ума.

Продолжительное время переменный ток оставался невостребованным. Эдисон противился внедрению явления в обиход. Промышленник боялся крупных финансовых потерь.

Никола Тесла изучал электрические машины

Ученые доказали недавно: передавать постоянный ток выгоднее. Снижаются потери излучения линии. Никола Тесла перевернул ход развития истории, правда восторжествовала.

Никола Тесла посетил конкурирующую с эдисоновской компанию, продвигая новое явление. Увлекся, часто ставил эксперименты на себе. В противовес сэру Хемфри Дэви, который укоротил жизнь, вдыхая различные газы, Тесла добился немалого успеха: покорил рубеж 86 лет. Ученый обнаружил: изменение направления течения тока со скоростью выше 700 раз в секунду делает процесс безопасным для человека.

Читайте также:  Как самому сделать сундук из дерева пошагово фото

Во время лекций Тесла брал руками лампочку с платиновой нитью накала, демонстрировал свечение прибора, пропуская через собственное тело токи высокой частоты. Утверждал: явление безвредно, даже приносит пользу здоровью. Ток, протекая по поверхности кожи, одновременно очищает. Тесла говорил, экспериментаторы прежних дней (смотрите выше) пропускали удивительные явления по указанным причинам:

  • Несовершенные генераторы механического типа. Вращающееся поле использовалось в прямом смысле: при помощи двигателя раскручивался ротор. Подобный принцип бессилен выдать токи высокой частоты. Сегодня проблематично, невзирая на нынешний уровень развития технологии.
  • В простейшем случае применялись ручные размыкатели. Вовсе нечего говорить о высоких частотах.

Сам Тесла использовал явление заряда и разряда конденсатора. Подразумеваем RC-цепочку. Будучи заряжен до определённого уровня, конденсатор начинает разряжаться через сопротивление. Параметров элементов определяют скорость процесса, протекающего согласно экспоненциальному закону. Тесла лишен возможности использовать методы управления контуров полупроводниковыми ключами. Термионные диоды были известны. Рискнем предположить, Тесла мог использовать изделия, имитируя стабилитроны, оперируя с обратимым пробоем.

Однако вопросы безопасности лишены почетного первого места. Частоту 60 Гц (общепринятая США) предложил Никола Тесла, как оптимальную для функционирования двигателей собственной конструкции. Сильно отличается от безопасного диапазона. Проще сконструировать генератор. Переменный ток в обоих смыслах выигрывает у постоянного.

Поныне безуспешно ведутся споры, касаемо первооткрывателя радио. Прохождение волны через эфир обнаружил Герц, описав законы движения, показав, сродство оптическим. Сегодня известно: переменное поле бороздит пространстве. Явление Попов (1895 год) использовал, передавая первое Земное сообщение «Генрих Герц».

Видим, ученые мужи дружны между собой. Сколько уважения демонстрирует первое сообщение. Дата остается спорной, каждое государство первенство хочет присвоить безраздельно. Переменный ток создает поле, распространяющееся через эфир.

Сегодня общеизвестны диапазоны вещания, окна, стены атмосферы, различных сред (вода, газы). Важное место отводится частоте. Установлено, каждый сигнал можно представить суммой элементарных колебаний-синусоид (согласно теоремам Фурье). Спектральный анализ оперирует простейшими гармониками. Суммарный эффект рассматривается, как равнодействующая элементарных составляющих. Произвольный сигнал раскладывается преобразованием Фурье.

Окна атмосферы определяются аналогичным образом. Увидим частоты, проходящие сквозь толщу хорошо и плохо. Не всегда последнее оказывается негативным эффектом. Микроволновые печи используют частоты 2,4 ГГц, ударно поглощаемые парами воды. Для связи волны бесполезны, зато хороши кулинарными способностями!

Новичков тревожит вопрос распространения волны через эфир. Обсудим подробнее неразрешенную поныне учеными загадку.

Взаимосвязь электрического, магнитного полей впервые продемонстрировал в 1821 году Майкл Фарадей. Чуть позднее показали: конденсатор пригоден для создания колебаний. Нельзя сказать, чтобы связь двух событий немедленно осознали. Феликс Савари разряжал лейденскую банку через дроссель, сердечником которому служила стальная игла.

Неизвестно доподлинно, чего добивался астроном, результат оказался любопытным. Иногда игла оказывалась намагниченной в одном направлении, иногда — противоположном. Ток генератора одного знака. Ученый правильно сделал вывод: затухающий колебательный процесс. Толком не зная индуктивных, емкостных реактивных сопротивлений.

Теорию процесс подвели позже. Опыты повторены Джозефом Генри, Вильямом Томпсоном, определившим резонансную частоту: где процесс продолжался максимальный период времени. Явление позволило количественно описать зависимости характеристик цепи от элементов составляющих (индуктивность и емкость). В 1861 году Максвелл вывел знаменитые уравнения, одно следствие особенно важно: «Переменное электрическое поле порождает магнитное и наоборот».

Возникает волна, векторы индукции взаимно перпендикулярны. Пространственно повторяют форму породившего процесса. Волна бороздит эфир. Явление использовал Генрих Герц, развернув обкладки конденсатора в пространстве, плоскости стали излучателями. Попов догадался закладывать информацию в электромагнитную волну (модулировать), что используется сегодня повсеместно. Причем в эфире и внутри полупроводниковой техники.

Переменный ток лежит в основе принципа действия большинства известных сегодня приборов. Проще сказать, где применяется постоянный, читатели сделают выводы:

  1. Постоянный ток применяется в аккумуляторах. Переменный порождает движение – не может храниться современными устройствами. Потом в приборе электричество преобразуется в нужную форму.
  2. КПД коллекторных двигателей постоянного тока выше. По этой причине выгодно применять указанные разновидности.
  3. При помощи постоянного тока действуют магниты. К примеру, домофонов.
  4. Постоянное напряжение применяется электроникой. Потребляемый ток варьируется в некоторых пределах. В промышленности носит название постоянного.
  5. Постоянное напряжение применяется кинескопами для создания потенциала, увеличения эмиссии катода. Случаи назовем аналогами блоков питания полупроводниковой техники, хотя иногда различие значительно.

В остальных случаях переменный ток выказывает весомое преимущество. Трансформаторы — неотъемлемая составляющая техники. Даже в сварке далеко не всегда господствует постоянный ток, но в любом современном оборудовании этого типа имеется инвертор. Так гораздо проще и удобнее получить достойные технические характеристики.

Хотя исторически первыми получены были статические заряды. Вспомним шерсть и янтарь, с которыми работал Фалес Милетский.

источник

Майкл Фарадей в 1831 году открыл закономерность, в последствии названной его именем – закон Фарадея. В своих опытах он использовал 2 установки. Первая состояла из металлического сердечника с двумя намотанными и не связанными между собой проводниками. Когда он подключал один из них к источнику питания, то стрелка гальванометра, подключенного ко второму проводнику, дёргалась. Так было доказано влияние магнитного поля на движение заряженных частиц в проводнике.

Второй установкой является диск Фарадея. Это металлический диск, к которому подключено два скользящих проводника, а они в свою очередь соединены с гальванометром. Диск вращают вблизи магнита, а при вращении на гальванометре также отклоняется стрелка.

Итак, выводом этих опытов была формула, которая связывает прохождение проводника через силовые линии магнитного поля.

Здесь: E – ЭДС индукции, N – число витков проводника, который перемещают в магнитном поле, dФ/dt – скорость изменения магнитного потока относительно проводника.

На практике также используют формулу, с помощью которой можно определить ЭДС через величину магнитной индукции.

Если вспомнить формулу связывающую магнитный поток и магнитную индукцию, то можно предположить, как происходил вывод формулы выше.

Так зарождалась генерация тока. Но давайте поговорим, как получают переменный ток ближе к практике.

Допустим у нас есть рамка из проводящего материала. Поместим её в магнитное поле. Согласно упомянутым выше формула, если рамку начать вращать, через неё потечет электрический ток. При равномерном вращении на концах этой рамки получится переменный синусоидальный ток.

Это связано с тем, что в зависимости от положения по оси вращения рамку пронизывает разное число силовых линий. Соответственно и величина ЭДС наводится не равномерно, а согласно положению рамки, как и знак этой величины. Что вы видите наг графике выше. При вращении рамки в магнитном поле от скорости вращения зависит как частота переменного тока, так и величина ЭДС на выводах рамки. Чтобы достичь определенной величины ЭДС при фиксированной частоте – делают больше витков. Таким образом получается не рамка, а катушка.

Получить переменный ток в промышленных масштабах можно таким же образом, как описано выше. На практике нашли широкое применение электростанции с генераторами переменного тока. При этом используются синхронные генераторы. Поскольку таким образом легче контролировать как частоту, так и величину ЭДС переменного тока, и они могут выдерживать кратковременные токовые перегрузки во много раз.

По числу фаз на электростанциях используются трёхфазные генераторы. Это компромиссное решение, связанное с экономической целесообразностью и техническим требованием создания вращающегося магнитного поля для работы электродвигателей, которые составляют львиную долю от всего электрооборудования в промышленности.

В зависимости от рода силы, которая приводит в движение ротор, число полюсов может быть различным. Если ротор вращается со скоростью 3000 об/мин, то для получения переменного тока с промышленной частотой в 50 Гц нужен генератор с 2 полюсами, для 1500 об/мин – с 4 полюсами и так далее. На рисунки ниже вы видите устройство генератора синхронного типа.

На роторе находятся катушки или обмотка возбуждения, ток к ней поступает от генератора-возбудителя (Генератор Постоянного Тока — ГПТ) или от полупроводникового возбудителя через щеточный аппарат. Щетки располагаются на кольцах, в отличие от коллекторных машин, в результате чего магнитное поле обмоток возбуждение не меняется по направлению и знаку, но меняется по величине – при регулировании тока возбудителя. Таким образом автоматически подбираются оптимальные условия для поддержки рабочего режима генератора переменного тока.

Итак, получить переменный ток в промышленных масштабах удалось способом, основанном на явлениях электромагнитной индукции, а именно с помощью трёхфазных генераторов. В быту используют и однофазные и трёхфазные генераторы. Последние рекомендуется приобретать для строительных работ. Дело в том, что большое число электрического инструмента и станков могут работать от трёх фаз. Это электродвигатели разнообразных бетономешалок, циркулярных пил, да и мощные сварочные аппараты также питаются от трёхфазной сети. Причем для таких задач подходят именно синхронные генераторы, асинхронные не подходят – из-за их плохой работы с устройствами, у которых большие пусковые токи. Асинхронные бытовые электростанции больше подходят для резервного электроснабжения частных домов и дач.

Однако не всегда рационально или удобно использовать бензиновые или дизельные бытовые электростанции. Есть выход – получить однофазный или трёхфазный переменный электрический ток из постоянного. Для этого используют преобразователи или, как их еще называют инверторы.

Инвертор – это устройство, которое преобразует величину и род электрического тока. В магазинах можно найти инверторы 12-220 или 24-220 Вольт. Соответственно эти приборы постоянные 12 или 24 Вольта превращают в 220В переменного тока с частотой в 50Гц. Схема простейшего подобного преобразователя на базе драйвера для полумостового преобразователя IR2153 изображена ниже.

Такая схема выдаёт модифицированную синусоиду на выходе. Она не совсем подходит для питания индуктивной нагрузки, типа двигателей и дрелей. Но если не на постоянной основе – то вполне можно использовать и такой простой инвертор.

Преобразователи постоянного тока в переменный с чистой синусоидой на выходе стоят значительно дороже, а их схемы значительно сложнее.

Важно! Приобретая дешевые платы-модули с «алиэкспресс» не рассчитывайте ни на чистый синус, ни на 50Гц частоту. Большинство таких устройств выдают высокочастотный ток с напряжением 220В. Его можно использовать для питания различных нагревателей и ламп накаливания.

Мы кратко рассмотрели принципы получения переменного тока в домашних условиях и в промышленных масштабах. Физика этого процесса известна уже почти 200 лет, тем не менее основным популяризатором этого способа получить электрическую энергию был Никола Тесла в конце XIX — первой половине XX века. Большинство современного бытового и промышленного оборудования ориентированы на использования именного переменного тока для электропитания.

Напоследок рекомендуем просмотреть видео, на котором наглядно показывается как работает генератор переменного тока:

источник

В жизни человека, увлекающегося электроникой, частенько встает задача преобразовать переменный ток в непрерывный. В всеобщем, достаточно простая задача для опытного, в данной сфере, человека. Но что делать, если ты только новичок в электронике? Существует ряд устройств, которые нам в этом помогут

Вам понадобится

  • Источник переменного тока, проводники,диодный мост, покупатель непрерывного тока.

1. Для начала нам надобно разобраться, что такое электрический ток и чем переменный ток отличается от непрерывного. Упорядоченное движение заряженных частиц называют электрическим током. В непрерывном электрическом токе через сечение проводника за идентичные промежутки времени проходит идентичное число заряженных частиц. А вот в переменном токе число этих частиц за идентичные промежутки времени неизменно различное.

2. А вот сейчас дозволено преступать непринужденно к реформированию переменного тока в непрерывный, в этом нам поможет устройство под наименованием «диодный мост». Диодный мост либо мостовая схема – одно из самых распространённых устройств для выпрямления переменного тока .Первоначально она была разработана с использованием радиоламп, но считалась трудным и дорогим решением, взамен неё использовалась больше примитивная схема со сдвоенной вторичной обмоткой в питающем выпрямитель трансформаторе. Теперь, когда полупроводники дюже дёшевы, в большинстве случаев используется именно мостовая схема. Но применение данной схемы не гарантирует 100% выпрямления тока , следственно в схему дозволено дополнить фильтром на конденсаторе, а также, допустимо, дросселем и стабилизатором напряжения. Сейчас, на выходе нашей схемы, как итог мы получаем непрерывный ток

Дабы получить непрерывный ток , довольно взять обыкновенный элемент питания. Напряжение такого источника ток а, как водится, стандартное – 1,5 Вольта. Объединив ступенчато несколько таких элементов, дозволено получить батарею с напряжением, пропорциональным числу таких элементов. Для приобретения непрерывного ток а дозволено также воспользоваться зарядным устройством от мобильного телефона (5 В) либо автомобильным аккумулятором (12В). Впрочем, если нужно получить нестандартное напряжение, скажем, 42 В, то придется соорудить самодельный выпрямитель с простейшим фильтром питания.

Вам понадобится

  • Понижающий трансформатор 220 в./42в.
  • Сетевой шнур с вилкой
  • Диодный мост PB-6
  • Электролитический конденсатор 2000 мкФ?60в
  • Паяльник, канифоль, припой, соединительные провода.

1. Соберите выпрямитель по изображенной на рисунке схеме:

2. Дабы положительно собрать и применять такое устройство, нужны минимальные познания о протекающих в приборе процессах. Следственно, наблюдательно ознакомьтесь со схемой и тезисами работы выпрямителя.Схема действия диодного моста, поясняющая правило его работы: Во время позитивного полупериода (мелкий штрих пунктир) ток движется по правому верхнему плечу моста к правильному итогу, через нагрузку поступает на левое нижнее плечо и возвращается в сеть. Во время негативного полупериода (огромный штрих пунктир) ток течет по иной паре диодов выпрямительного моста. Тут Тр. – трансформатор, понижает напряжение с 220 до 42 Вольт, гальванически разделяет высокое и низкое напряжение. Д – диодный мост, выпрямляет переменное напряжение, поступившее с трансформатора. Цифрой 1 обозначена первичная (сетевая) обмотка трансформатора, цифрой 2 – вторичная (выходная) обмотка трансформатора.

3. Подсоедините к первичной обмотке трансформатора сетевой шнур с вилкой. Двумя проводами объедините два итога вторичной обмотки трансформатора с двумя входными итогами диодного моста. Итог диодного моста с маркировкой «минус» припаяйте к негативному итогу конденсатора.

4. Негативный итог конденсатора обозначен на его корпусе ясной полосой со знаком «минус». К этому же итогу припаяйте провод синего цвета. Это будет негативный выход выпрямителя. Итог диодного моста со знаком «плюс» припаяйте ко второму итогу конденсатора совместно с проводом красного цвета. Это будет правильный итог выпрямителя. Перед включением скрупулезно проверьте правильность монтажа – ошибки тут не возможны.

Видео по теме

Полезный совет
Конденсатор играет роль фильтра питания, сглаживая пульсации, оставшиеся позже выпрямления диодным мостом переменного тока.

Для зарядки аккумулятора накала используется зарядное устройство, которое дозволено купить в торговой сети либо же сделать своими руками, потратив при этом минимум средств, да и времени.

Вам понадобится

  • Полулитровая стеклянная банка, алюминиевая и свинцовая пластина, резиновая трубка, крышка с отверстием посередине.

1. Возьмите стакан либо полулитровую стеклянную банку, алюминиевую и свинцовую пластины размером 40х100 мм и резиновую трубку диаметром 2 см. Отрежьте от резиновой трубки кольцо длиной 2 см, натяните его на алюминиевую пластину, на ярус электролита. Это нужно, потому что при работе выпрямителя электролит мощно разъедает алюминий у самой поверхности раствора. Резина предохраняет его от коррозии и тем самым дает вероятность выпрямителю трудиться гораздо дольше.

Читайте также:  Сделай сам композицию из яблоками

2. Используйте в качестве электролита раствор двууглекислого натра (питьевая сода). Возьмите соду из расчета 5-7 гр. на 100 мл воды. В данном выпрямителе позитивным полюсом будет алюминий, негативным — свинец. При включении прибора в обыкновенную городскую сеть переменного тока свинцовой пластиной, через выпрямитель пойдет ток. Но пойдет он только в одном направлении. На алюминиевой пластине в это время непрерывно будет правильный полюс напряжения.Если в сеть включить алюминиевую пластину, то на свинцовой пластине непрерывно будет негативный полюс напряжения. Получится однополупериодный выпрямитель , так как через него проходит электрический ток только одного полупериода. В первом случае, скажем, через прибор будет проходить ток только позитивного направления.

3. Для полного применения напряжения используют двухполупериодные выпрямители. Их необходимо составить из 2-х либо четырех элементов, в зависимости от нужной для зарядки силы тока. А подключаются они в обе фазы электросети.При включении прибора в сеть переменного тока примените предохранители. Регулировку напряжения, которое подается на зарядку, дозволено произвести при помощи реостата, тот, что дозволит “гасить” лишнее напряжение в цепи и соответственно сделает типичные данные для зарядки аккумулятора.

Видео по теме

Обратите внимание!
Для зарядки аккумуляторов накала рационально применять выпрямитель из 4 элементов, потому что для снятия силы тока в один ампер требуется выпрямитель с площадью алюминиевой пластины в 100 кв. см.

Полезный совет
Сила зарядного тока аккумуляторов должна составлять 0,1% от его емкости.

Если вы решили самосильно изготовить трансформатор, то вам нужно знать некоторые вещи об этом устройстве, в том числе и как рассчитать ток в трансформаторе , о чем и пойдет речь ниже.

1. Узнайте, если вам до этого было неведомо, наивысший ток нагрузки и напряжение на вторичной обмотке.Умножьте ток максимальной нагрузки (в амперах) на показатель 1,5 – узнаете обмотку второго трансформатора (в амперах).

2. Рассчитайте мощность, расходуемую выпрямителем от вторичной обмотки трансформатора. Для этого, умножьте напряжение вторичной обмотки на наивысший ток , тот, что проходит через нее.Подсчитайте мощность трансформатора. Дабы узнать мощность следует умножить максимальную мощность на вторичной обмотке на 1,25.

3. Высчитайте величину тона на первичной обмотке. Для этого полученную в прошлом пункте мощность следует поделить на сетевое напряжение на первичной обмотке.Рассчитайте параметры площади сердечника магнитного провода. Следует взять мощность трансформатора в ваттах и умножить ее на 1,3.

4. Рассчитайте трансформатор по тому числу витков на первичной обмотке, тот, что будет у вас. При этом дабы узнать число витков на первичной обмотке, следует напряжение первичной обмотки поделить на сечение сердечника, а потом полученный итог умножить на 50.

5. Рассчитайте трансформатор на число витков вторичной обмотки. Возьмите напряжение вторичной обмотки и поделите это число на сечение магнитного провода, позже чего полученный итог умножьте на 55.Установите, какое сечение проводов необходимо для обмотки. Для этого возьмите величину ток а, которая проходит через обмотку, и умножьте это число на 0,02.Готово, сейчас вы, имеете, примерное представление о том, как рассчитать ток в трансформаторе .

Видео по теме

Диодный мост – одно из самых распространенных в электронике устройств, предуготовленных для выпрямления переменного напряжения. В итоге реформирования на выходе диодного мост а получается пульсирующее напряжение вдвое большей частоты, чем на входе. Без такой схемы не обходится фактически ни один блок питания современных электротехнических устройств.

1. Выберите тип диодного мост а. Он может быть исполнен из отдельных диодов либо же в виде монолитной диодной сборки. Такая сборка владеет превосходством, от того что примитивна при монтировании на плате, впрочем в случае выхода диода из строя его немыслимо будет заменить иным. Придется менять всю схему.

2. При отсутствии готового диодного мост а соберите его из четырех диодов. Подойдут диоды, рассчитанные на силу тока 1 А и напряжение 1000 В. Рассчитайте нужную мощность мост а посредством умножения предельного тока на предельное напряжение, с двукратным резервом по мощности.

3. Пример расчета: имеется диодный мост на 1000 В и 4 А. Мощность нагрузки составит 1000х4=4000 Вт. С учетом удвоенного «резерва прочности»: 4000/2=2000 Вт (2 кВт). Подобно считается мощность и для других моделей выпрямительных мост ов. При составлении диодного мост а рассматривайте, что через весь из диодов будет происходить около 70% всеобщего тока, иными словами, если в нагрузке ток 4 А, то в отдельном диоде мост а он составит 3 А.

4. Для охлаждения сборки мост а (возможен, вы монтируете мост для сварочного полуавтомата), используйте алюминиевый радиатор площадью около 800 кв. см. Подготовьте поверхность радиатора: просверлите отверстия, нарежьте резьбу для крепления сборки. Используйте для возрастания теплоотдачи теплопроводную пасту КПТ-8.

5. Диодную сборку закрепите на поверхности радиатора посредством болтов М6, применяя при этом трубчатый ключ.

6. Распаяйте схему медной шиной. Шину размером 10 кв. мм припаяйте к итогам сборки и шину размером 20 кв. мм для цепи входа-выхода тока. Шину непременно припаивайте к итогам диодных мост ов, если объединить мост ы без пайки (клеммами), концы итогов будут мощно греться. В итоге получился маленький по размерам диодный мост , комфортный для компоновки его в корпусе сварочного полуавтомата.

Обратите внимание!
Дио?дный мо?ст — электрическая схема, предуготовленная для реформирования («выпрямления») переменного тока в пульсирующий. Такое выпрямление именуется двухполупериодным. Выполняется по мостовой схеме Гретца.

Полезный совет
Для справки: выпрямитель — это электровакуумное либо полупроводниковое устройство, предуготовленное для реформирования переменного входного электрического тока в непрерывный выходной электрический ток. Диодный мост – электронная схема, предуготовленная для выпрямления переменного тока в пульсирующий непрерывный.

Для приобретения переменного тока может быть использован генератор на непрерывных магнитах. Такое устройство генерирует не индустриальное напряжение 220 В, а низкое переменное напряжение по трем фазам, которое позднее может быть выпрямлено и подано на выход в виде непрерывного тока , пригодного для зарядки батарей 12 В.

1. Предусмотрите в конструкции генератора переменного тока следующие узлы: статор, состоящий из катушки и провода; железные оси и цапфы; два магнитных ротора; выпрямитель.

2. Статор изготовьте из шести катушек медного провода, залитых эпоксидной смолой. Корпус статора закрепите цапфами, дабы он не вращался. Провода от катушек подключите к выпрямителю, тот, что будет изготавливать позднее непрерывный ток, нужный для зарядки батарей. Для того дабы избежать перегрева, прикрепите выпрямитель к алюминиевому радиатору.

3. Магнитные роторы закрепите на комбинированный конструкции, вращающейся на оси. Задний ротор установите за статором. Передний ротор будет находиться снаружи, он крепится к заднему ротору посредством длинных спиц, пропущенных через центральное отверстие статора. Если вы планируете применять генератор на непрерывных магнитах с ветряком, на этих же спицах смонтируйте лопасти ветряка. Лопасти будут вращать роторы, и таким образом перемещать магниты по катушек. Переменное магнитное поле роторов создает ток в катушках.

4. От того что генератор на непрерывных магнитах спроектирован для совместного применения с небольшим ветрогенератором, предусмотрите следующие узлы: мачту, исполненную в виде железный трубы, закрепленной тросами; вращающуюся головку, установленную на верхушке мачты; хвостовик для поворота ветряка; лопасти.

5. Катушки для применения в генераторе намотайте для становления крупных циклов больше толстым проводом, при этом катушка должна содержать малое число витков. Впрочем учтите, что при слишком мелких циклах генератор на непрерывных магнитах трудиться не будет. Для применения генератора как на огромный, так и на малой скорости следует менять метод соединения катушек (со «звезды» на «треугольник» и напротив). «Звезда» будет отлично трудиться при малом ветре, «треугольник» – при большом.

6. При устройстве крепления магнитов обращайте внимание на то, что они не обязаны отделяться от посадочного места. Мотающийся магнит будет распарывать корпус статора и необратимо повредит генератор.

7. При установке ротора и статора оставьте между ними зазор в 1 мм. При тяжелых условиях работы данный зазор следует увеличить.

8. Еще один технологический момент – лопасти крепите не к внешнему ротору, а только на спицы. При этом удерживаете генератор так, дабы его ось вращения располагалась вертикально, а не горизонтально.

Видео по теме

Обратите внимание!
Работа с электричеством неизменно опасна! Весьма не желанно применение Не заизолированных проводников, окислившихся контактов и источников питания находящихся в аварийном состоянии!

источник

Для начала нам нужно разобраться, что такое электрический ток и чем переменный ток отличается от постоянного. Упорядоченное движение заряженных частиц называют электрическим током. В постоянном электрическом токе через сечение проводника за одинаковые интервалы времени проходит одинаковое количество заряженных частиц. А вот в переменном токе количество этих частиц за одинаковые интервалы времени всегда разное.

А вот теперь можно преступать непосредственно к преобразованию переменного тока в постоянный, в этом нам поможет устройство под названием «диодный мост». Диодный мост или мостовая схема — одно из самых распространённых устройств для выпрямления переменного тока .
Изначально она была разработана с применением радиоламп, но считалась сложным и дорогим решением, вместо неё применялась более примитивная схема со сдвоенной вторичной обмоткой в питающем выпрямитель трансформаторе. Сейчас, когда полупроводники очень дёшевы, в большинстве случаев применяется именно мостовая схема. Но использование данной схемы не гарантирует 100% выпрямления тока , поэтому в схему можно дополнить фильтром на конденсаторе, а также, возможно, дросселем и стабилизатором напряжения. Теперь, на выходе нашей схемы, как результат мы получаем постоянный ток

Чтобы получить постоянный ток , достаточно взять обычный элемент питания. Напряжение такого источника ток а, как правило, стандартное – 1,5 Вольта. Соединив последовательно несколько таких элементов, можно получить батарею с напряжением, пропорциональным количеству таких элементов. Для получения постоянного ток а можно также воспользоваться зарядным устройством от мобильного телефона (5 В) или автомобильным аккумулятором (12В). Однако, если необходимо получить нестандартное напряжение, например, 42 В, то придется соорудить самодельный выпрямитель с простейшим фильтром питания.

  • Понижающий трансформатор 220 в./42в.
  • Сетевой шнур с вилкой
  • Диодный мост PB-6
  • Электролитический конденсатор 2000 мкФ×60в
  • Паяльник, канифоль, припой, соединительные провода.

Соберите выпрямитель по изображенной на рисунке схеме:

Чтобы правильно собрать и использовать такое устройство, необходимы минимальные знания о происходящих в приборе процессах. Поэтому, внимательно ознакомьтесь со схемой и принципами работы выпрямителя.Схема действия диодного моста, объясняющая принцип его работы: Во время положительного полупериода (мелкий штрих пунктир) ток движется по правому верхнему плечу моста к положительному выводу, через нагрузку поступает на левое нижнее плечо и возвращается в сеть. Во время отрицательного полупериода (крупный штрих пунктир) ток течет по другой паре диодов выпрямительного моста. Здесь Тр. – трансформатор, понижает напряжение с 220 до 42 Вольт, гальванически разделяет высокое и низкое напряжение. Д – диодный мост, выпрямляет переменное напряжение, поступившее с трансформатора. Цифрой 1 обозначена первичная (сетевая) обмотка трансформатора, цифрой 2 – вторичная (выходная) обмотка трансформатора.

Подсоедините к первичной обмотке трансформатора сетевой шнур с вилкой. Двумя проводами соедините два вывода вторичной обмотки трансформатора с двумя входными выводами диодного моста. Вывод диодного моста с маркировкой «минус» припаяйте к отрицательному выводу конденсатора.

Отрицательный вывод конденсатора обозначен на его корпусе светлой полосой со знаком «минус». К этому же выводу припаяйте провод синего цвета. Это будет отрицательный выход выпрямителя. Вывод диодного моста со знаком «плюс» припаяйте ко второму выводу конденсатора вместе с проводом красного цвета. Это будет положительный вывод выпрямителя. Перед включением тщательно проверьте правильность монтажа – ошибки здесь не допустимы.

Конденсатор играет роль фильтра питания, сглаживая пульсации, оставшиеся после выпрямления диодным мостом переменного тока.

Для зарядки аккумулятора накала применяется зарядное устройство, которое можно приобрести в торговой сети или же сделать своими руками, потратив при этом минимум средств, да и времени.

  • Полулитровая стеклянная банка, алюминиевая и свинцовая пластина, резиновая трубка, крышка с отверстием посередине.

Возьмите стакан или полулитровую стеклянную банку , алюминиевую и свинцовую пластины размером 40х100 мм и резиновую трубку диаметром 2 см. Отрежьте от резиновой трубки кольцо длиной 2 см, натяните его на алюминиевую пластину, на уровень электролита . Это необходимо, так как при работе выпрямителя электролит сильно разъедает алюминий у самой поверхности раствора. Резина предохраняет его от коррозии и тем самым дает возможность выпрямителю работать значительно дольше.

Используйте в качестве электролита раствор двууглекислого натра (питьевая сода). Возьмите соду из расчета 5-7 гр. на 100 мл воды. В данном выпрямителе положительным полюсом будет алюминий, отрицательным — свинец . При включении прибора в обычную городскую сеть переменного тока свинцовой пластиной, через выпрямитель пойдет ток. Но пойдет он только в одном направлении. На алюминиевой пластине в это время постоянно будет положительный полюс напряжения .Если в сеть включить алюминиевую пластину, то на свинцовой пластине постоянно будет отрицательный полюс напряжения. Получится однополупериодный выпрямитель , потому что через него проходит электрический ток только одного полупериода. В первом случае, например, через прибор будет проходить ток только положительного направления.

Для полного использования напряжения применяют двухполупериодные выпрямители. Их нужно составить из двух или четырех элементов, в зависимости от требуемой для зарядки силы тока. А подключаются они в обе фазы электросети.При включении прибора в сеть переменного тока примените предохранители . Регулировку напряжения, которое подается на зарядку , можно произвести при помощи реостата, который позволит «гасить» лишнее напряжение в цепи и соответственно создаст нормальные условия для зарядки аккумулятора .

Для зарядки аккумуляторов накала целесообразно использовать выпрямитель из 4 элементов, так как для снятия силы тока в один ампер требуется выпрямитель с площадью алюминиевой пластины в 100 кв. см.

Сила зарядного тока аккумуляторов должна составлять 0,1% от его емкости.

  • Выпрямитель для зарядки аккумулятора

Если вы решили самостоятельно изготовить трансформатор, то вам необходимо знать некоторые вещи об этом устройстве, в том числе и как рассчитать ток в трансформаторе , о чем и пойдет речь ниже.

Узнайте, если вам до этого было неизвестно, максимальный ток нагрузки и напряжение на вторичной обмотке.
Умножьте ток максимальной нагрузки (в амперах) на коэффициент 1,5 – узнаете обмотку второго трансформатора (в амперах).

Рассчитайте мощность , расходуемую выпрямителем от вторичной обмотки трансформатора. Для этого, умножьте напряжение вторичной обмотки на максимальный ток , который проходит через нее.
Подсчитайте мощность трансформатора. Чтобы узнать мощность следует умножить максимальную мощность на вторичной обмотке на 1,25.

Читайте также:  Лабазы самолазы как сделать самому

Высчитайте величину тона на первичной обмотке . Для этого полученную в прошлом пункте мощность следует разделить на сетевое напряжение на первичной обмотке.
Рассчитайте параметры площади сердечника магнитного

Использование в повседневной жизни различных электрических приборов и устройств, работающих благодаря электроэнергии, обязывает нас иметь минимальные познания в области электротехники. Это знания, которые сохраняют нам жизнь. Ответы на вопросы о том, как из постоянного тока сделать переменный, какое напряжение должно быть в квартире и какой современный человек должен знать, чтобы избежать поражения и гибели от него.

Сегодня невозможно представить свою жизнь без электроэнергии. Ежедневно все население нашей планеты использует миллионы ватт электричества для обеспечения нормальной жизнедеятельности. Но очередной раз, включая электрочайник, человек не задумывается о том, какой путь пришлось проделать электричеству, чтобы он смог заварить себе утреннюю чашку ароматного кофе.

Существует несколько способов получения электричества:

  • из тепловой энергии;
  • из энергии воды;
  • из атомной (ядерной) энергии;
  • из ветровой энергии;
  • из солнечной энергии и др.

Для того чтобы понять природу возникновения электрической энергии, рассмотрим несколько примеров.

Электрический ток — это направленное движение заряженных частиц. Самый простой способ его получения — энергия природных сил.

В данном примере от энергии ветра. Природный феномен дующего с различной силой ветра люди научились использовать давно. Укрощает ветер простой ветряк, оборудованный приводом и соединённый с генератором. Генератор и вырабатывает электрическую энергию.

Излишки тока при постоянном использовании ветряка можно накапливать в аккумуляторных батареях. Выработанный постоянный экологически чистый ток в быту и производстве не применяется.

Полученный и преобразованный в переменный ток, он идет для бытового использования. Накопленные излишки электричества хранятся в аккумуляторных батареях. При отсутствии ветра запасы электричества, хранящиеся в аккумуляторах, преобразуются и поступают на нужды человека.

К большому сожалению, этот вид природной энергии, дающий возможность получать электричество, не везде имеется. Рассмотрим способ получения электричества там, где воды много.

Простейшая ГЭС, сделанная из дерева по принципу мельницы, размер которой порядка 1,5 метров, способна обеспечить электричеством, используемым и на отопление, частное подсобное хозяйство. Такую бесплотинную ГЭС сделал русский изобретатель, уроженец Алтая — Николай Ленев. Он создал ГЭС, перенести которую могут два взрослых мужчины. Все дальнейшие действия аналогичны получению электричества от ветряка.

Вырабатывают электричество и крупные электростанции и гидростанции. Для промышленного получения электричества применяют огромные котлы, дающие пар. Температура пара достигает 800 градусов, а давление в трубопроводе поднимается до 200 атмосфер. Этот перегретый пар с высокой температурой и огромным давлением поступает на турбину, которая начинает вращаться и вырабатывать ток.

То же самое происходит и на гидроэлектростанциях. Только здесь вращение происходит за счёт больших скорости и объема воды, падающей с огромной высоты.

Постоянный ток обозначается DC. На английском языке пишется как Direct Current. Он в процессе работы со временем не меняет своих свойств и направления. Частота постоянного тока равна нулю. Обозначают его на чертежах и оборудовании прямой короткой горизонтальной черточкой или двумя параллельными черточками, одна из которых пунктирная.

Используется постоянный ток в привычных нам аккумуляторах и батарейках, используемых в огромном числе различного типа устройств, таких как:

  • счетные машинки;
  • детские игрушки;
  • слуховые аппараты;
  • прочие механизмы.

Все ежедневно пользуются мобильным телефоном. Зарядка его происходит через блок питания, компактный преобразователь DC/AC, включаемый в бытовую розетку.

Электрические приборы потребляют переменный однофазный ток. Электроприборы заработают только с подключением трансформатора и Многие производители устанавливают преобразователь DC/AC непосредственно в сам агрегат. Это намного упрощает эксплуатацию электрооборудования.

Выше говорилось, что все аккумуляторы, батарейки для фонариков, пультов телевизоров имеют постоянный ток. Чтобы преобразовать ток, существует современное устройство под названием инвертор, он с легкостью из постоянного тока сделает переменный. Рассмотрим, как это применимо в повседневности.

Бывает, что во время нахождения в автомашине человеку необходимо срочно распечатать на ксероксе документ. Ксерокс имеется, машина работает и, включив в прикуриватель переходник на инвертор, он может подключить к нему ксерокс и распечатать документы. Схема преобразователя достаточно сложна, особенно для людей, которые имеют отдаленное понятие о работе электричества. Поэтому в целях безопасности лучше не пытаться самостоятельно соорудить инвертор.

Протекая, переменный ток в течение одной секунды меняет направление и величину 50 раз. Изменение движения тока — это его частота. Обозначается частота в герцах.

У нас частота тока 50 герц. Во многих странах, например США, частота равна 60 герц. Также бывает трёхфазный и однофазный переменный ток.

Для бытовых нужд приходит электричество, равное 220 вольтам. Это действующее значение переменного тока. Но амплитуда тока максимального значения будет больше на корень из двух. Что в итоге даст 311 вольт. То есть фактическое напряжение бытовой сети составляет 311 вольт. Для изменения постоянного тока на переменный применяются трансформаторы, в которых используются различные схемы преобразователей.

Все электрические наружные сети несут по своим проводам переменный ток различного напряжения. Оно может колебаться от 330000 вольт до 380 вольт. Передача осуществляется только переменным током. Данный способ транспортировки — самый простой и дешёвый. Как из переменного тока сделать постоянный, давно известно. Поставив трансформатор в нужном месте, получим необходимое напряжение и силу тока.

Самая простая схема решения вопроса о том, как из постоянного тока сделать переменный 220 В, не существует. Это может сделать диодный мост. Схема преобразователя DC/AC имеет в своём составе четыре мощных диода. Мост, собранный из них, создает движение тока в одном направлении. Мостик срезает верхние границы переменных синусоид. Диоды собираются последовательно.

Вторая схема преобразователя переменного тока — это на выход с моста, собранного из диодов, конденсатора или фильтра, который сгладит и исправит провалы между пиками синусоид.

Отлично преобразует постоянный ток в переменный инвертор. Схема его сложна. Используемые детали не из дешевого порядка. Потому и цена на инвертор немаленькая.

В повседневной жизни мы постоянно сталкиваемся на работе и в быту с электроприборами, подключенными в розетки. Ток, бегущий от электрического щита до розетки, однофазный переменный. Происходят случаи поражения электрическим током. Меры безопасности и знания о поражении током необходимы.

В чем принципиальная разница между попаданием под напряжение переменным током и постоянным? Имеется статистика, что переменный DC однофазный ток в пять раз опаснее постоянного AC тока. Поражение током, вне зависимости от его типа, само по себе отрицательный факт.

Небрежность в обращении с электроприборами может, мягко говоря, негативно сказаться на здоровье человека. Поэтому не стоит экспериментировать с электричеством, если на то нет специальных навыков.

Действие тока на человека зависит от нескольких факторов:

  • сопротивления тела самого потерпевшего;
  • напряжения, под которое попал человек.
  • от силы тока на момент контакта человека с электричеством.

С учетом всего перечисленного можно сказать, что действие переменного тока намного опаснее, чем постоянного. Имеются данные экспериментов, подтверждающие факт, что для получения равного результата при поражении сила постоянного тока должна быть в четыре — пять раз выше, чем переменного.

Сама природа переменного тока отрицательно сказывается на работе сердца. При поражении током происходит непроизвольное сокращение сердечных желудочков. Это может привести к его остановке. Особенно опасно соприкосновение с оголенными жилами людям, имеющим сердечный стимулятор.

У постоянного тока частота отсутствует. Но высокие напряжение и сила тока могут привести также к летальному исходу. Выйти из под контакта с постоянным электрическим током проще, чем из-под контакта с переменным.

Этот небольшой обзор природы электрического тока, его преобразования должен быть полезен людям, далеким от электричества. Минимальные познания в области происхождения и работы электроэнергии помогут понять суть работы обычных бытовых приборов, которые так необходимы для комфортной и спокойной жизни.

Движение заряженных частиц (электронов и ионов), которое направлено или упорядоченно, называется электрическим током. Электрический ток может быть переменный ток и постоянный.

Электроток с постоянными свойствами и направлением называется постоянным. Постоянный ток необходим для работы всех электроприборов. Все электрическое оборудование, питающееся от аккумулятора, тоже потребляет постоянный ток. Батарейка и аккумулятор являются источниками постоянного тока, с помощью преобразователя его можно превратить в переменный ток. Постоянный ток и переменный, в чем же их отличия?

Когда величина изменяется по синусоидальному закону, то такой электрический ток называется переменный. Характеризуется он частотой и напряжением, бывает однофазным и трехфазным.

Всем известно, что выдаваемое розеткой напряжение составляет 220 Вольт, однако оно не постоянное, а максимальное напряжение, может достигать показаний свыше 300 Вольт.

Соответственно постоянный имеет не меняющееся в течение времени направление движения электронов и величину напряжения, а напряжение переменного тока постоянно изменяется. Отличие переменный от постоянного тока имеют именно в величине напряжения.

Измеряется она Герцами, представляя собой, отношение количества повторений к промежутку времени, за которое они совершены. Россия применяет частоту 50 Гц.

На практике частота 50 Гц значит, что поток электронов колеблется, а его направление изменяется 50 раз в секунду.

Во всех электрических розетках течет переменный ток. Использование переменного, а не постоянного тока связано с возможностью передачи электроэнергии на большие расстояния без значительных потерь. Этим собственно и отличается постоянный ток и также переменный. В электрической подстанции подается напряжение в 220 тысяч Вольт и более, затем в трансформаторной подстанции, расположенной поблизости от жилых строений, преобразуется из 10 тысяч в 380 Вольт и направляется потребителю.

Электродвигатели, работающие на переменном токе значительно проще в конструкции и более долговечны.

Переменный в постоянный преобразуют с помощью выпрямителей. Сначала подключают диодный мост, чтобы сделать его однонаправленным. Затем необходимо подключение конденсатора или сглаживающего фильтра для исправления провала между пиками синусоиды.

Превращается постоянный ток и также переменный в одно мгновение, а вот с обратным изменением дела обстоят намного хуже. То есть переменный в постоянный преобразовать сложнее. Для этого требуется использовать инвертор, достаточно сложное и дорогое устройство. Как правило, такое преобразование требуется редко, например, если нужно включить электроприборы в бортовую сеть автомобиля.

Преобразователь переменного тока в постоянный — это устройство, преобразующее энергию переменного тока в постоянный. Это устройство нелинейное, поэтому спектр напряжения на его выходе отличается от входного. В иностранной литературе подобные устройства называются преобразователями AC/DC (переменный/постоянный ток). На рисунке 1 приведено условно-графическое обозначение преобразователя AC/DC. На его входе и выходе приведены осциллограммы и спектрограммы напряжения.

Рисунок 1. Условно-графическое обозначение выпрямителя

В состав преобразователя переменного напряжения в постоянное входят как выпрямитель, так и фильтр, подавляющий нежелательные составляющие выходного напряжения. Задача фильтра, подключаемого к выходу выпрямителя, выделить только постоянную составляющую U 0 (полезный эффект выпрямления) и подавить все остальные составляющие спектра напряжения U d (пульсации). Это действие часто называется «сглаживанием» выходного напряжения. Поэтому такой фильтр называется сглаживающим. Его выполняют в виде ФНЧ (обычно LC-фильтра) с полосой пропускания Δf f c .

Если выпрямитель, входящий в состав преобразователя AC/DC, в процессе работы использует одну полуволну напряжения переменного тока, то он называется однотактным или однополупериодным, а если обе полуволны — то двухтактным или двухполупериодным. На рисунке 2 приведена упрощенная схема однотактного преобразователя переменного напряжения в постоянное.


Рисунок 2. Эквивалентная схема однотактного преобразователя переменного тока в постоянный

На данном рисунке ключ К синхронно с частотой источника U1 подключает нагрузку к источнику. На нагрузке получается пульсирующее напряжение с частотой ω c . За период частоты входного колебания через нагрузку и источник проходит только один импульс тока. Частота первой гармоники тока (и напряжения пульсаций на нагрузке) равна частоте сети ω c . Постоянная составляющая тока нагрузки в данной схеме протекает через источник входного напряжения. Если в его составе присутствует трансформатор, то это приведет к его подмагничиванию и ухудшению массогабаритных параметров. Если напряжениесети на входе однополупериодного выпрямителя гармоническое U 1 = U m sinω c t , то временные диаграммы напряжения на входе и выходе данной схемы будут выглядеть так, как показано на рисунке 3.


Рисунок 3. Временные диаграммы напряжения на входе и выходе однополупериодного преобразователя

Как видно из данного рисунка уровень постоянной составляющей тока на выходе схемы однотактного преобразователя AC/DC достаточно мал. Поэтому чаще применяется двухтактная схема. Схема двухтактного преобразователя переменного напряжения в постоянное приведена на рисунке 4.


Рисунок 4. Эквивалентная схема двухтактного преобразователя переменного тока в постоянный

В данной схеме ключи К1 и К2 подключают нагрузку на время одной полуволны (Т/2) два раза за период. Поэтому за период изменения напряжения сети через нагрузку и источник проходят два импульса тока, причем благодаря переключению ток через нагрузку протекает в одном направлении. Постоянная составляющая тока нагрузки не протекает через первичный источник и не влияет на его работу. Частота импульсов тока и напряжения на нагрузке U H в два раза выше частоты сети ω c , что позволяет уменьшить габариты сглаживающего фильтра. Все перечисленные факторы позволяет значительно улучшить массу и габариты преобразователя переменного тока в постоянный. Временные диаграммы напряжений и токов на входе и выходе двухтактного преобразователя переменного тока в постоянный приведены на рисунке 5.


Рисунок 5. Временные диаграммы напряжений и токов на входе и выходе двухполупериодного преобразователя

В качестве ключей в схемах преобразователей переменного тока в постоянный используются неуправляемые и управляемые вентили, в качестве которых используются диоды, тиристоры, биполярные и полевые транзисторы. Наиболее широко применяются неуправляемые вентили, в качестве которых используются мощные полупроводниковые диоды.

Следует отметить, что современные AC/DC преобразователи строятся по более сложной схеме. В них сначала производится выпрямление и фильтрация входного колебания, затем генерация высокой частоты, напряжение которой трансформируется в нужное на выходе, а затем снова выпрямление и фильтрация всех нежелательных спектральных составляющих. Это позволяет значительно уменьшить габариты преобразователя и повысить его к.п.д. Часто они выполняются в виде малогабаритного неразъемного блока.


Рисунок 6. Внешний вид AC/DC преобразователя

  1. Сажнёв А.М., Рогулина Л.Г., Абрамов С.С. “Электропитание устройств и систем связи”: Учебное пособие/ ГОУ ВПО СибГУТИ. Новосибирск, 2008г. – 112 с.
  2. Алиев И.И. Электротехнический справочник. – 4-е изд. испр. – М.: ИП Радио Софт, 2006. – 384с.
  3. Гейтенко Е.Н. Источники вторичного электропитания. Схемотехника и расчёт. Учебное пособие. – М., 2008. – 448 с.
  4. Электропитание устройств и систем телекоммуникаций: Учебное пособие для вузов / В.М.Бушуев, В.А. Деминский, Л.Ф. Захаров и др. – М.,2009. – 384 с.
  5. Денисов А.И., Зволинский В.М., Руденко Ю.В. Вентильные преобразователи в системах точной стабилизации. – К.: Наукова думка, 1997. – 250 с.

Вместе со статьей «Преобразование переменного тока в постоянный» читают:

источник