Меню Рубрики

Как сделать пассивный излучатель самому

Большой проблемой для любой акустической системы являются низкие частоты. Чтобы поднять их уровень чаще всего применяется фазоинвертор. Он не сложен в изготовлении, но довольно сложно его правильно рассчитать. Намного проще поднять басы акустической системы, установив в них пассивный излучатель своими руками. Поэтому в этой статье рассмотрим подробнее что такое пассивный излучатель.

Пассивный излучатель (он же пассивный динамик) — это излучатель, лишенный магнитной системы и катушки. Он не способен преобразовывать электрический сигнал в звуковые колебания, а значит не может работать самостоятельно и должен возбуждаться активным излучателем, установленным в тот же закрытый корпус.

Наиболее эффективен пассивный излучатель на низких частотах. Н а средних и высоких частотах звукового давления, создаваемого активным излучателем, просто недостаточно. Поэтому используя пассивный динамик можно своими руками значительно улучшить басы вашей акустической системы.

Установка пассивного излучателя приводит к увеличению площади излучающей поверхности. Два диффузора колеблются вместе, поэтому во-первых повышается уровень в НЧ диапазоне, а во вторых и повышается КПД всей акустической системы.

Для примера рассмотрим обобщенную АЧХ акустической системы до и после вставки пассивного излучателя.

На сравнительном графике видно, что при наличии пассивного излучателя, АЧХ акустической системы значительно повышается в диапазоне от 20 до 500Гц. А это и есть низкочастотная область, т.е. те самые басы.

Как активный, так и каждый пассивный излучатель имеет свою резонансную частоту. На этой частоте его колебания максимальны.

Основную трудность для любой акустической системы обычно представляют самые низкие частоты, поэтому резонансную частоту всегда стараются понизить. Для этого диффузор пассивного динамика делают большей массы.

Довольно популярная сегодня область применения пассивных излучателей — это портативные колонки. При их размерах не так то просто получить действительно хороший бас. Акустический пассивный излучатель может значительно улучшить ситуацию .

Если вы хотите своими руками сделать портативную колонку, то перед вами стоит вопрос контроля заряда аккумулятора. Для этих целей рекомендую глянуть статью Умный контроллер заряда литиевых аккумуляторов — модуль на tp4056. Тем более что стоят такие модули всего 30 центов за штуку.

Но даже если колонка не портативная, а настольная диаметр диффузора пассивного динамика должен быть больше или равен диаметру активного излучателя.

При этом собственный резонанс пассивного излучателя должен лежать ниже резонанса основного динамика. В идеале, для настольной акустики он должен лежать ниже 20Гц. Будет еще лучше, если такую же низкую резонансную частоту будет иметь и активный громкоговоритель.

Применяется пассивный излучатель только в корпусе типа закрытый ящик. Т.к. возбуждается он только колебаниями воздуха внутри корпуса от активной головки. Следовательно любая негерметичность корпуса колонки с пассивным излучателем сильно снижает эффективность отдачи по басам.

Можно легко сделать пассивный излучатель своими руками, удалив у низкочастотного динамика магнитную систему и подвижную катушку. Лучше использовать басовый динамик диаметром не меньше предполагаемого активного излучателя. Так же не лишним будет немного утяжелить диффузор.

Не обязательно препарировать нормальный динамик, чтобы сделать из него пассивный динамик своими руками. Лучше использовать его по назначению, а в дополнение к нему дешево купить пассивный излучатель на AliExpress.

Показанные выше пассивные излучатели отлично подходят для создания самодельных портативных колонок. Они обладают диаметром 2 дюйма и стоят всего 143 рубля за пару. Покупать рекомендую в этом магазине.

Эти пассивные излучатели уже меньше похожи на обычные динамики потому, что лишены металлической корзины и имеют минимальную толщину. Они обладают диаметром 3 дюйма (79мм), за счет чего могу обеспечить лучшие басы. Обойдутся они несколько дороже — 515 рублей за пару. Ссылка на магазин.

Это уже 4-х дюймовый пассивный излучатель басов. Его цена так же не столь велика и составляет 260 рублей. Купить его можно тут. Однако благодаря большему диаметру он еще лучшую отдачу по низким частотам.

Пассивные излучатели уже давно используются во многих типах колонок, заменяя собой фазоинвертор. Например, пассивный излучатель отлично подходит для сабвуфера, особенно автомобильного. Поэтому определенно стоит попробовать встроить пассивный излучатель своими руками в вашу АС.

источник

Существует еще одна разновидность акустического оформления громкоговорителя, способная обеспечивать воспроизведение громкоговорителем низших частот при сравнительно небольших габаритах ящика. Она имеет несколько названий, из которых наиболее правильным являются: фазоинвертор с пассивным радиатором или ФИ с закрытым отверстием. Еще такое оформление называется пассивный излучатель (ПИ) или пассивный радиатор.

Особенность этого фазоинвертора состоит в том, что громкоговоритель размещается в ящике, имеющем вблизи места его установки отверстие, с закрепленной в нем подвижной системой второго громкоговорителя без магнитной системы и центрирующей шайбы. Диаметр диффузора пассивного радиатора приблизительно равен диаметру диффузора громкоговорителя. Отверстие в звуковой катушке заклеено и в этом месте, к диффузору прикреплен дополнительный груз. Масса груза зависит, главным образом, от объема ящика и резонансной частоты фазоинвертора.

Принцип действия с пассивным радиатором аналогичен принципу действия обычного фазоинвертора. На резонансной частоте закрытого ФИ диффузор пассивного радиатора колеблется синфазно с диффузором основного громкоговорителя, обеспечивая эффективное воспроизведение сигнала в области низших частот. Таким образом, в отличие от основного фазоинвертора здесь масса в отверстии заменена массой подвижной системы пассивного радиатора, включая дополнительный груз.

Груз позволяет более просто, чем это делается при измерении размера (объема) прохода в обычном фазоинверторе, регулировать резонансную частоту фазоинвертора. При уменьшении объема ящика обычного фазоинвертора приходится увеличивать объем прохода или уменьшать площадь отверстия, что снижает эффективность фазоинвертора. Фазоинвертор с закрытым отверстием свободен от этого недостатка и в это его основное достоинство.

Пассивные излучатели нашли применение в акустических системах эпохи СССР, таких как: “25 АС-128 Электроника” и “35 АС-015 Электроника”. В современных АС такое оформление применяется в акустике PMC IB2i или сабвуфере Sunfire True Subwoofer. Пассивный излучатель может быть практически любой формы, круглой, квадратной или к примеру овальной, как показано на фото ниже:

Другим положительным качеством фазоинвертора с закрытым отверстием является несколько большая синфазность движений обоих диффузоров в области резонанса по сравнению с движением объема воздуха в отверстии и диффузора громкоговорителя в обычном фазоинверторе. Резонансная частота фазоинвертора с закрытым отверстием равна ( также как и обычного):

fф = 1 : (2Π · (√mф · Сф)), где

  • – масса подвижной системы пассивного радиатора плюс соколеблющаяся с ним масса воздуха, присоединенная к диффузору, г;
  • Сф – результирующая гибкость (величина, обратная упругости) объема воздуха в ящике и дополнительной подвижной системы, см. дин.

Расчет фазоинвертора с закрытым отверстием производят следующим образом: выбрав объем ящика и, зня эффективный диаметр диффузора пассивного радиатора Dэф определяют гибкость воздушного объема из выражения:

Здесь объем ящика выражен в см 3 , а эффективный диаметр диффузора пассивного радиатора Dэф в см. Напомним, что эффективный диаметр диффузора равен:

Dэф =0,85-0,9 Dдиф, где

  • Dдиф – полный диаметр диффузора (правильно измерять диаметр – от центра подвеса (гофра) с одной стороны до центра подвеса другой стороны).

Эквивалентный эффективный диаметр диффузора эллиптической (овальной) формы равен:

Dэкв.эф = (0,85 – 0,9) · (√Dб · Dм), где

  • – большой диаметр эллипса;
  • – малый диаметр эллипса.

Поскольку гибкость подвеса диффузора пассивного радиатора Спод много больше, чем гибкость воздушного объема ящика Сф, ее влияние на суммарную гибкость крайне мало и им можно пренебречь. Общая гибкость определяется по формуле:

Cобщ = (Спод · Сф) · (Спод + Сф)

Спод >> Cф, Собщ ≈ Cф.

Приняв, как обычно, резонансную частоту закрытого фазоинвертора, равной основной резонансной частоте громкоговорителя, находят массу , соответствующей этой частоте и гибкости выбранного объема:

mф = 1 : (4Π 2 · fф 2 · Сф)

Как указывалось выше, в эту массу входит масса диффузора пассивного радиатора mрад и присоединенная масса соколеблющегося с ним воздуха Δm, т.е.:

mф = mрад + Δm.

Величина Δm зависит от эффективного диаметра диффузора и определяется выражением:

Δm = (8 · 10 -4 ) · Dэф 3 , г

Таким образом, диффузор радиатора должен обладать массой:

mрад = mф – Δm;

Практически этой величине и будет равняться масса груза, который необходимо установить на диффузоре. Для облегчения необходимых расчетов в таблице приводятся значения гибкости объема Сф для ящиков объемом от 20 до 80 л и диффузоров пассивного радиатора с эффективным диаметром от 15 до 22 см, там же указанна величина присоединенной массы воздуха Δm для тех же диаметров диффузоров.

Гибкость объема ящика, см/дин 10 -6 при Dэф, см
15 16 17 18 19 20 22
Δm, г 1,7 3,3 3,9 4,7 5,5 6,4 8,6
20 0,45 0,35 0,27 0,22 0,17 0,14 0,1
30 0,67 0,52 0,41 0,32 0,26 0,21 0,15
40 0,9 0,69 0,55 0,43 0,35 0,29 0,19
50 1,12 0,87 0,68 0,54 0,44 0,36 0,24
60 1,35 1,04 0,82 0,65 0,52 0,43 0,29
70 1,57 1,21 0,95 0,76 0,61 0,5 0,34
80 1,8 1,4 1,09 0,87 0,7 0,57 0,39

Величина гибкости объема воздуха в ящиках с промежуточными значениями и эффективного диаметра диффузора радиатора определяют методом интерполяции по двум соседним значениям гибкости, между которыми находятся принятые размеры.

Для примера определим массу груза, который должен быть укреплен на диффузоре пассивного радиатора диаметром Dдиф = 22 см, устанавливаемом в ящике ФИ объемом = 50 л при резонансной частоте ФИ 45 Гц. Эффективный диаметр:

Dэф = 0,87 → Dдиф=0,87 · 22 = 19 см.

Находим по таблице гибкость объема воздуха в ящике при таком эффективном диаметре диффузора: эта гибкость равна:

Сф = 0,44 · 10 -6 см/дин.

Полная масса диффузора должна быть:

mф = 1 : (4Π 2 · fф 2 · Сф) = 10 6 : (4Π 2 · 45 2 · 0,44) ≈ 28,4 г

Присоединенная масса воздуха, согласно таблице, равна Δm = 5,5 г. Следовательно, для получения заданной резонансной частоты необходимо установить дополнительный груз:

mрад = mф – Δm = 28,4 – 5,5 ≈ 23 г

Дополнительный груз представляется собой стальной или медный (латунный) диск толщиной h, которая для стали в зависимости от диаметра диска d, равна:

h = (0,16 · mрад) : d 2

Как указывалось выше, магнитная система и центрирующая шайба удаляются из громкоговорителя, предназначенного для работы в качестве пассивного радиатора. Это делается для того, чтобы увеличить гибкость и линейность движения подвижной системы, и устранить опасность касания звуковой катушки. При этом не уменьшается действующий объем ящика. Представление о конструкции пассивного радиатора, установленного рядом с громкоговорителем, показано на рисунке ниже, на котором видно как дополнительный груз в виде диска прикреплен в центре диффузора болтом с гайками. Отверстие в диффузоре заклеивают кусочком жесткой бумаги (ватман или тонкий картон) с зубцами, приклеенными к диффузору целлулоидным или другим клеем, например БФ-2. Само собой разумеется, что основная резонансная частота громкоговорителя, предназначенного для пассивного радиатора, не имеет ни какого значения. Или же можно купить готовые пассивные излучатели, они сейчас в большой доступности.

Проектируя фазоинвертор с закрытым отверстием, не следует делать его объемом менее 30-40 л при резонансной частоте ниже 50 Гц, т.к. увеличение массы подвижной системы пассивного, также как и массы воздуха в проходе обычного ФИ, ухудшает переходные характеристики громкоговорителя.

Проверить правильность настройки сделанного фазоинвертора можно либо по видимой при резонансе ФМ амплитуде колебаний пассивного радиатора, либо по возрастающей при резонансе громкости, в чем можно убедиться, поставив кусок фанеры между диффузорами и поднесся ухо к диффузору пассивного радиатора. Также, как и в обычном фазоиверторе, частотная характеристика полного сопротивления громкоговорителя в фазоиверторе с закрытым отверстием должна иметь два максимум почти одинаковой высоты.

Ящик для фазоивертора можно изготовить из фанеры или ДСП плит толщиной 8-12 мм, при этом следует учесть, что он не должен иметь щелей. Внутрь ящика полезно поместить звукопоглощающий материал, например, поролон толщиной 15-30 мм, который сделает более гладкой частотную характеристику громкоговорителя в области средних частот.

источник

Сообщества › Автозвук › Блог › Эффективнее, чем фазоинвертор. Тест влагозащищённого корпусного сабвуфера с пассивным излучателем Kicker CWTB10

Вот чем мне нравится Kicker, так это своим нестандартным подходом. Пока все упёрлись и вагонами клепают сабвуферы в фазоинверторных корпусах, эти старички car audio просто вспоминают, что есть ещё и другие виды оформления. Пассивный излучатель (он же – passive radiator) имеет много общего с фазоинвертором, но лишён очень многих его недостатков. И ведь ничего нового, Гарри Олсон описал его принцип в своём патенте аж в 1935 году…

Читайте также:  Как сделать музыкальную шкатулку самому

Не стану забегать вперёд и первым делом «встречу по одёжке». Kicker CWTB10 очень компактен – длина корпуса не превышает 44 см. Внешний диаметр, соответственно, как у типовой «десяточки» – немногим меньше 28 см. В серии есть и 8-дюймовая модель, она ещё компактнее.

Особо отмечу, что сабвуфер позиционируется производителем как универсальный – его можно использовать не только в автомобиле, но и, скажем, в катерах, открытых внедорожниках или квадроциклах. Корпус выполнен из толстого ударопрочного пластика и полностью герметичен.

Для крепления сабвуфера предусмотрены отверстия с резьбой, а в комплекте идут несколько кронштейнов для горизонтального или вертикального монтажа.

Мне на тест досталась модель с номинальным импедансом 2 Ом, но вообще у Kicker CWTB10 есть и 4-омная версия. 2-омную лучше подключать к какому-нибудь басовому моноблоку, а вот 4-омную можно использовать и с многоканальными усилителями, подключая сабвуфер к паре каналов в мост.

Теперь, собственно, к акустическому оформлению – пассивному излучателю. Форма корпуса тут играет не самую важную роль, но в нашем случае он выполнен в виде трубы, на концах которой – по диффузору. Динамику на самом деле принадлежит только один из них. Второй точно такой же диффузор и на точно таком же подвесе – это и есть пассивный излучатель.

КАК РАБОТАЕТ ПАССИВНЫЙ ИЗЛУЧАТЕЛЬ?

Я не зря в самом начале упомянул, что пассивный излучатель имеет много общего с фазоинвертором. Для тех, кто не знает как работает фазоинвертор, коротко рассказываю.

Когда диффузор динамика ходит туда-сюда, он попеременно то сжимает, то разжимает воздух внутри корпуса. Соответственно, этот воздух будет попеременно стремиться то выйти наружу через порт, то засасываться через него обратно. Но фишка в том, что воздух внутри порта имеет определённую инертность, и к выходу из него все эти колебания будут «добираться» с некоторым запозданием.

На определённой частоте (именно она и называется частотой настройки порта) окажется так, что воздух на выходе из порта будет колебаться синхронно с самим диффузором. Т. е. излучения от диффузора и из порта будут складываться. Собственно, это и есть эффект акустического усиления.

Пассивный излучатель работает абсолютно по такому же принципу. Только вместо порта с воздушной массой внутри него тут работает просто диффузор на подвесе. По сути, пассивный излучатель – это точно такой же динамик, только без магнитной системы. И если настройку обычного фазоинверторного порта можно менять его пропорциями и размерами, то в пассивном излучателе настройка меняется массой диффузора и упругостью/вязкостью/жёсткостью его подвеса.

В ЧЁМ ПРЕИМУЩЕСТВА ПАССИВНОГО ИЗЛУЧАТЕЛЯ ПЕРЕД ОБЫЧНЫМ ФАЗОИНВЕРТОРНЫМ ПОРТОМ?

А вы посмотрите на размеры корпуса, и вопрос отпадёт сам собой. В случае с Kicker CWTB10 внутренний объём получается что-то около 27 литров. Если попробовать рассчитать обычный порт для такого корпуса (например, в JBL Speakershop или в BassPort), то программа выдаст для него ну очень неудобные размеры. Либо сечение будет слишком маленьким, либо длина невменяемой.

А у пассивного излучателя можно сделать хоть какую площадь и хоть какую настройку. Как думаете, получится сделать обычный порт такого же сечения с низкой настройкой? Вот и я о том же.

Динамики крепятся через «лапы» защитного гриля. Чтобы добраться до винтов, нужно всего лишь снять с них заглушки.

Кстати, это вам не саморезы какие-нибудь, всё серьёзно – с вживлёнными в корпус закладными гайками.

Внутри корпус заполнен распушённым синтепоном. Если коротко, то он, во-первых, создаёт эффект «увеличения» внутреннего объёма, а во-вторых, в какой-то мере демпфирует колебания воздуха внутри него.

Сам динамик – без лишних этикеток и прочих украшательств. Хотя указанная на лицевой стороне серия Comp R намекает на его родство с отдельным сабвуферным динамиком Kicker 43CWR104. Скорее всего, это он и есть, только в упрощённом исполнении – без декоративных накладок и с более простыми терминалами подключения кабелей.

А вот то, что стоит с другой стороны корпуса. Снаружи выглядит как динамик, но внутри на динамик совсем не похож. Вернее, похож на динамик без мотора.

Там, где к диффузору обычно крепится катушка, закреплена металлическая шайба – она корректирует вес подвижной системы.

Для интереса снял импедансную кривую не только целиком для всего сабвуфера, но и отдельно для динамика. Судя по характеру кривых, пассивный излучатель настроен где-то около 35 Гц, что очень близко к Fs самого динамика.

Измеренные параметры динамика в сабвуфере Kicker CWTB10:
Fs (собственная резонансная частота) – 35 Гц
Vas (эквивалентный объем) – 19,5 л
Qms (механическая добротность) – 8,97
Qes (электрическая добротность) – 0,51
Qts (полная добротность) – 0,49
Mms (эффективная масса подвижной системы) – 159 г
BL (коэффициент электромеханической связи) – 11,1 Тл м
Re (сопротивление звуковой катушки постоянному току) – 1,8 Ом
dBspl (опорная чувствительность, 1м, 1Вт) – 84,2 дБ

Впрочем, параметры динамика это так, больше для интереса. Мы же имеем готовый сабвуфер, поэтому оценю его работу в сборе.

Для начала снимаю АЧХ излучения самого диффузора. Обратите внимание на провал как раз в зоне настройки пассивного излучателя – около 35 Гц:

Дело в том, что при работе сабвуфера на этой частоте пассивный излучатель входит в резонанс и сам начинает сжимать-разжимать воздух в корпусе, и для динамика воздух в корпусе как бы становится упруже. Что, в свою очередь, и ограничивает ход его диффузора.

Получается, сабвуфер на этих частотах почти не работает? Конечно же, нет, просто вблизи частоты настройки пассивного излучателя работает в основном не динамик, а сам излучатель:

И вот так они работают вместе:

Общую АЧХ показать, к сожалению, не могу, поскольку измерения на нижних частотах корректно делать лишь в ближнем поле (не вести же его из-за одного измерения в безэховую камеру МТУСИ). Но даже беглый анализ АЧХ динамика и пассивного излучателя даёт понять, что в салоне автомобиля сабвуфер должен работать очень вкусно. Что, собственно, и подтвердилось на практике.

Небольшой эксперимент в автомобиле показал, что не стоит преждевременно судить о возможностях этого саба по его размерам. Пассивный излучатель при правильной настройке (а здесь он настроен правильно) – большая сила. По отдаче и глубине баса Kicker CWTB10 уж точно не уступает среднестатистическому 12-дюймовому сабвуферу.

По характеру баса скажу одно – это Kicker. Плотный, весомый, сочный. Для клубной музыки – вообще находка. Что интересно, с увеличением громкости бас не начинает давить на уши, зато начинает восприниматься тактильно – басовый ритм воспринимается ударами в грудь как будто тяжёлым резиновым мячом. И это от какой-то там десяточки!

На открытом пространстве (а с таким исполнением Kicker CWTB10 можно спокойно использовать хоть на катере, хоть на открытом внедорожнике) бас вполне естественно теряет в глубине, но почти не теряет в напоре. Я бы даже сказал, что он становится ещё более плотным и собранным по своей структуре. И опять же, самое то для ритмичной клубной музыки.

В общем, правильно рассчитанный пассивный излучатель – это вам не какой-то там «фазик на трубе». Это посерьёзней будет.

Плюсы:
Компактен, удобен в установке
Можно использовать в открытых внедорожниках, катерах, квадроциклах и т.д.
Качественное исполнение
Неожиданно высокая для 10-дюймового калибра басовая отдача
На клубной музыке бас просто шикарен

Минусы:
Тяготеет преимущественно к ритмичной музыке

источник

Коллеги, кто-нибудь делал пассивный излучатель своими руками? Промышленные аналоги уж больно дороги. Казалось бы, чего там заумного, ан нет, денег хотят. Имеет смысл заморачиваться? И как это сделать?

А смысл?
Как понимаю ПИ вещь весьма сложная по свойствам
Или какие-то особые идеи есть?

Я нет. Но вроде всё просто. Берём такую же голову и используем в качестве ПИ. Частоту резонанса регулируем массой, добротность — перемыкая катушку резистором, подбирая его номинал.

Катушку у ПИ, исдеваесся там и магнитной системы нет, горловина (там куда обычно катушка вклеивается ) заглушена и торчит резьбовая шпилька что бы доп массу присоединять

Вот мне было бы интересно как и из чего можно сделать квадратный ПИ. Уж больно интересно как делается подвес.

Ты и круглый то наверное не сделаешь. Слепить может и получится чего, но линейности точно не будет. А квадратный тем более. Их отливают вроде. Или пресс-формой.

Читаем внимательно: «Берём такую же голову и используем в качестве ПИ.»

или покупаем подвижку (с рем комплекта например п-аудио или др) и будет дешевле..

Прошу прощения, немного off, просто навеяло. Вот на примере ПИ хорошо виден физический смысл самого ФИ — дополнительная колебательная система. И так же хорошо понятно, что для раскачки и последующей остановки этой колебательной системы нужно определенное время, выражающееся в некотором количестве колебаний. Ну и уж само собой разумеется, что подобная система никогда не передаст импульсные (быстро изменяющиеся) сигналы без искажений их огибающей.

2 Nagema
В герметичном ПИ затухание быстрее,чем в ФИ.В герметичную С-70
В нижнюю грань вклеивается 30 ГД. Шипы 50 мм на мрамор.Звучание сразу легчает.

только кпд на практике выше за счет большей площади ПИ чем площадь ФИ..

Затухания — быстрее. Раскачка — медленнее.

читал когда-то о подобной конструкции , но непомню гдэ .
примерно следующие.
раньше в аптеках продовали эластичню резину, довольно-таки широкую. так вот на ее основе делался подвес, клеялся в рамку, а сам дифузор вырезался из пенопласта. а принастрйке наклеевались дополнительные пластины.
вот такая идея. а дальше при большом желании ее можно и развить.

Кто о чем, а голодный о еде.
Ну резонанс, и что? Ну неповезло вам, что не слышали хороший ФИ. Ну не важно, что ГД в ЗЯ или даже в экране — тоже резонанс, или об этом тихонько умалчивают, чтобы громогласно декларировать ФИ — зло?

Ну что за люди.
У Иофффе-Лизункова вся математика достаточно понятно расписана.
На форуме у Иголкина есть ветка, где проблема изготовления подвесов любой формы, путем прессования поролона решена в положительном смысле. Занавес. Обморок.

Обращаюсь к коллегам, которые беспокоятся о резонансах.

Я тоже в маниакальном порыве собрал ЗЯ с добротностью 0,5 на частоте 45 Гц, чтобы избежать ужаса переходных процессов. Потом ради прикола померял переходную характеристику, ожидая увидеть ПОЛНОЕ отсутствие каких либо выбросов. Был тогда, помнится, подключен осциллограф к микрофону, на АС подана периодическая ступенька — и что мы увидели?

А увидели мы нормально затянутый переходной процесс, который рисуют эмуляторы у ФИ.

В комнате, коллеги. В ней самой. Именно поэтому в помещение нормально настроенный ФИ играет не намного хуже ЗЯ.

Если же есть желание слушать совершенно корректный низ, вам придется разорится на НЧ демпфирование помещения, в котором установлена акустика.

Если не хотите слышать ФИ, его нужно настроить так, чтобы переходная характеристика уложилась в 20-40 мс. На 40 мс, желательно, чтобы вообще не осталось колебаний. Именно в этот период времени укладывается атака НЧ инструментов.

Готов воспринять все наблюдения, которые опровергают все вышесказанное и обогатиться чужим опытом.

Почему вы так считаете? Я делал различные ФИ с разными головками: в 40 л со срезом 40 Гц, в 100 л со срезом 32 Гц, в 150 л со срезом 20 Гц. Тщательно настраивал их, слушал долгое время, менял добротность головки с помощью отрицательного выходного сопротивления.
А вот сейчас проверим вас на знания. Если можно, приведите параметры «хорошего ФИ». Интересуют: Vas/Vb, Qt, F-3, Fs.

Читайте также:  Красивые прически для девочки 10 лет сделать самой

Наблюдения к сожалению не намного лучше ваших (в смысле сложности, как в вашем предложении по улучшению комнаты). Все дело в частотах среза НЧ звена. Если выбирать в районе 45 Гц, то всегда будут присутствовать искажения огибающей, так как 45 Гц попадают в звуковую рабочую область. Выход — понизить срез и увести его в зону инфразвука — от 16 Гц и ниже. Сделать это, естественно, трудно — нужны приличные объемы ящика, различные способы электрического управления головкой — ЭМОС, корректоры, отр. вых. сопр. и т.д. Но результат того стОит — получаете действительно минимально окрашенный звук на НЧ, недостижимый никакими другими способами.

З.Ы. тема в принципе давно обсуждаемая, поэтому граничащая с флеймом.

добавлю по теме: Применение ПИ, как и все в этой жизни, имеет свои плюсы и минусы. Плюс в том, что можно при небольшом объеме ящика получить низкую частоту настройки без применения длинной трубы большого диаметра. А минус в том, что никогда линейность подвеса ПИ не будет столь же хорошей, как у воздуха. И на средних и больших амплитудах ПИ будет давать повышенные гармоники.

Последний раз редактировалось gross; 06.07.2006 в 11:26 .

источник

Народная мудрость:
«Гордая птица ёж.
Не полетит, пока не пнёшь».

Совместить роли ежа и его ускорителя в одном флаконе пришлось мне. Именно мой характер стал тем движком, который гонял мысли в моей голове и крутил руки–ноги в нужные стороны. Результатом деятельности стало самостоятельное изготовление нескольких динамиков. И затем уже комплекта акустических систем.

Теперь по порядку. Переехал я с семьей в другой город. Перед переездом продавались многие громоздкие вещи, в том числе и АС типа «Электроника 75АС-065». Это те, что с сапфировым напылением и никелевыми диффузорами. И вот через несколько лет проживания вдруг пришло осознание того, что в северные города бывшего СССР колонок подобного типа просто не завозили. Любая линейка 35АС – пожалуйста. Околокомпьютерная акустика – в любом магазине. А вот динамики с хорошим звуком (а тем более колонки) только через Интернет. А это дорого получается с доставкой. Да и психологический фактор того, что вдруг не то пришлют. Тупик.

В поисках благополучного разрешения ситуации обратился к информации, выложенной на аудио- форумах. Очень заинтересовали самодельные электростатические излучатели. Но дальше обмоточного провода дело так и не пошло — нет его в продаже в нашем городе. А из старых трансформаторов, к сожалению два новых не намотаешь. Затем дошла очередь до излучателей типа «ленточные». Ведь все необходимые компоненты как оказалось можно запросто достать. Магнитики — из поломанных жестких дисков. Ленточку-диафрагму из старого конденсатора. Фанера продается в магазине. Мечта самодельщика система «Plug and Play»- подсоединяй все правильно и играй! Только нужно некоторые усилия приложить.

Как здорово, что усилия не пропали даром. И, судя по тому, как ведут себя источники звука, часть характера передалось двум ленточным динамикам. После предварительных испытаний оформил их в комплект акустических систем. Я назвал их «Альфитоны». Тем самым, нанеся оттенок родословной линии по основанию, на котором все собрано.

Теперь чуть подробнее. Большой родословный корпус это бывшие «Амфитоны» с динамиком 75ГДН-3. Сверху стоит самодельный ленточный сч/вч динамик. Частота раздела- 1 кГц. Фильтры 2-го порядка. Усилитель Агеева (25 Вт/ Кг-0,003%). Звуковая карта EMU0202.

Цвет колонок, да и весь дизайн не типичный для акустических систем, но ведь и колонки не заводские, а сделанные мной, поэтому имею право поломать парочку стереотипов и окрасить собственную акустическую систему в нестандартно яркий цвет, а комнату – в яркий звук.

Нормальным явлением считается, что любая самодельная акустическая система обладает индивидуальным звучанием. А вот чтобы акустическая система имела характер – это перебор. Например, такой момент. Включаю музыку. Играет. Вот только если «покрутить» её около двух часов, то появляется звук (с большой буквы!). Я несколько раз пытался «разогреть» колонки, гоняя их на всю катушку. Ну не влияет их «прожаривание» на время «раздумывания». Еще наблюдения. Музыка играет «недостаточно громко», вот только с собеседником приходиться перекрикиваться и горло устает минут за десять таких разговоров. Получается что громкость вполне достаточная. Это еще не все. Ленточники «халтурят». Они откровенно молчат в паузах между звуками! Хотя ведь так и должно быть: нет сигнала — нет и звука. Но мозг возмущен таким звучанием. Где привычное наполнение в звуке «Пс-с-с-с…»? Словно спектр резко обеднел. Если слушать инструменты-скрипки, треугольник, колокольчики всякие – они играют, они есть. А привычное наполнение пропало. Обращаю внимание на слово «привычное». Привычный компьютер, привычный телефон, привычный звук. Привычный подъезд в доме. Может, стоит пересмотреть некоторые взгляды не только на звук, но и на привычные предметы, окружающие нас? Мне хватило пары дней прослушивания тогда еще макета излучателя, чтобы оценить звук. Конечно, бумажные 75ГДН «недотягивают» до «нового стандарта качества». Но если бы сейчас мне предложили пользоваться АС типа «Электроника-065», то я бы отклонил это предложение. Частично. «Басовики» ненавязчиво требуют замены на «Альфитонах».
К хорошему привыкаешь быстро. Качественный звук вызвал здоровые хлопоты по апгрейду фонотеки. То, что совсем недавно звучало хорошо и отлично, нынче не выдерживает избалованный слух. Минимальный стандарт мп3/320. Еще лучше «.flac». Вот такие у нас в доме живут «Альфитоны» с характером. Надеюсь, что их «оптимистический» дизайн не оставит никого равнодушным и поднимет настроение.

источник

Азы акустики для чайников: типы акустического оформления колонок, статья. Журнал «Stereo & V >Сохранить и прочитать потом —

В предыдущем путеводителе для начинающих меломанов, посвященном акустике помещения мы выяснили, что любая комната — своего рода резонатор, драматически влияющий на характер звучания системы. Теперь пришла пора поговорить непосредственно об источниках этого самого звучания, то есть об акустических системах.

Чтобы как следует разобраться в процессах, происходящих в ящике, на стенке которого смонтирован один или несколько динамиков, нужно вдумчиво прочитать пару-тройку книжек, в каждой из которых формул больше, чем во всем школьном курсе физики. Я забираться в такие дебри не буду, так что не стоит данный материал как исчерпывающий анализ или руководство по постройке аудиофильских колонок. Однако очень надеюсь, что он поможет начинающим меломанам (да и некоторым хроническим тоже) как следует сориентироваться в разнообразии акустических решений, каждое из которых его разработчики, разумеется, называют единственно правильным.

Некоторое время после изобретения в 1924 году электродинамического излучателя с коническим диффузором (окей, просто динамика), его деревянное обрамление исполняло в первую очередь декоративные и защитные функции. Оно и понятно — после долгих лет прослушивания пластинок через слюдяные мембраны и раструбы граммофонов, саунд нового устройства и безо всякой акустической доработки казался просто апофеозом благозвучия.

Мембраны граммофонов изготавливались чаще всего из алюминия или слюды

Однако технологии записи быстро совершенствовались и стало понятно, что более-менее правдоподобно воспроизвести слышимый диапазон динамиком, просто закрепленном на некой подставке, крайне проблематично. Дело в том, что предоставленная сама себе динамическая головка находится в состоянии акустического короткого замыкания. То есть волны от фронтальной и тыловой поверхностей диффузора, излучаемые, понятное дело, в противофазе, беспрепятственно накладываются друг на друга, что самым печальным образом отражается на эффективности работы, и в первую очередь на передаче басов.

Кстати, в процессе данного рассказа я буду чаще всего рассуждать именно о низких частотах, так как их воспроизведение — ключевой момент в работе любого корпуса АС. ВЧ-драйверы в силу малой длины излучаемых волн во взаимодействии с внутренним объемом колонки вообще не нуждаются, и чаще всего полностью от него изолированы.

Самый простой способ отделить фронтальное излучения динамика от тылового — смонтировать его на щите как можно большего размера. Из этой простой идеи и родились, собственно, первые акустические системы, представлявшие собой ящик с открытой задней стенкой, поскольку для компактности края щита просто взяли, да и загнули под прямым углом. Однако в плане воспроизведения басов успехи подобных конструкций впечатляли не слишком. Помимо несовершенства корпуса проблема была еще и в очень небольшом по современным понятиям ходе подвески диффузоров. Чтобы хоть как-то выйти из положения, использовались динамики как можно большего размера, способные развивать приемлемое звуковое давление при небольшой амплитуде колебаний.

PureAudioProject Trio 15TB с 15-дюймовыми НЧ-драйверами на трехслойных бамбуковых панелях

Несмотря на кажущуюся примитивность подобных конструкций, у них имелись и кое-какие достоинства, причем настолько специфические и интересные, что адепты открытых АС не перевелись до сих пор.

Начать с того, что отсутствие каких-либо препятствий на пути звуковых волн – лучший путь к повышению чувствительности. Момент этот особенно ценен для аудиофильских ламповых усилителей, в особенности однотактных или лишенных обратной связи. Бумажные диффузоры большого диаметра даже на мощности порядка четырех-пяти ватт способны создать довольно-таки внушительный, и при этом на удивление открытый и свободный саунд.

При высоте 1,2 м в мире открытой акустики Jamo R907 считаются практически компактами

Что же касается тылового излучения, то чтобы не вносить искажений в прямой звук, оно должно приходить к слушателю с заметной задержкой (свыше 12-15 мс) — в таком случае его влияние ощущается как легкая реверберация, лишь добавляющая в саунд воздуха и расширяющая музыкальное пространство. Тонкость в том, что для создания этой самой «заметной задержки» колонки, разумеется, должны быть расположены на изрядном расстоянии от стен. К тому же большая площадь передней панели и внушительные размеры НЧ-драйверов соответствующим образом сказываются на общих габаритах АС. Одним словом, обладателей небольших и даже средних жилых комнат просьба не беспокоиться.

Кстати, частный случай открытых систем — акустика, построенная на электростатических излучателях. Только за счет почти невесомой диафрагмы большой площади, ко всем вышеописанным преимуществам, у электростатов добавляется способность филигранно передавать даже самые резкие динамические контрасты, а благодаря отсутствию разделения сигнала в зонах СЧ и ВЧ, еще и завидная тембральная точность.

Плюсы: Высококлассные открытые колонки — отличный способ получить реальный кайф от прослушивания пуристских ламповых однотактников.

Минусы: Про жирные компрессионные басы лучше забыть сразу. Весь звуковой тракт должен быть подчинен идее открытой акустики, а сами колонки придется выбирать из крайне ограниченного числа предложений.

С ростом мощности и улучшением параметров усилителей сверхвысокая чувствительность акустики перестала быть главным камнем преткновения, а вот проблемы неравномерности АЧХ, и в особенности правильного воспроизведения басов, стали еще более актуальными.

Гигантский шаг к прогрессу в данном направлении сделал в 1954 году американский инженер Эдгар Вильчур. Он запатентовал акустическую систему закрытого типа, и это был отнюдь не трюк в стиле нынешних патентных троллей.

Патентная заявка Эдгара Вильчура на АС в закрытом оформлении

К тому моменту уже был изобретен фазоинвертор и, понятное дело, к ящику с дном динамик тоже примеряли неоднократно, только вот ничего хорошего из этого не получалось. Из-за упругости замкнутого объема воздуха приходилось или терять существенную часть энергии диффузора, или делать корпус непомерно большим, чтобы снизить градиент давления. Вильчур же решил обратить зло во благо. Он сильно понизил упругость подвеса, переложив таким образом контроль за движением диффузора на объем воздуха — пружину куда более линейную и стабильную, чем гофр или резиновое кольцо.

В закрытом ящике движения диффузора контролируются воздухом — в отличие от бумаги или резины он не стареет и не изнашивается

Так удалось не только полностью избавиться от акустического короткого замыкания и поднять отдачу на низких частотах, но и ощутимо сгладить АЧХ на всем ее протяжении. Однако обнаружился и минорный момент. Выяснилось, что демпфирование замкнутым объемом воздуха приводит к повышению резонансной частоты подвижной системы и резкому ухудшению воспроизведения частот ниже данного порога. Для борьбы с такой неприятностью пришлось увеличивать массу диффузора, что логичным образом привело к снижению чувствительности. Плюс поглощение внутри «черного ящика» чуть ли не половины акустической энергии, не могло не внести вклада в снижение звукового давления. Одним словом, новому типу колонок потребовались усилители довольно серьезной мощности. К счастью, на тот момент они уже существовали.

Читайте также:  Как сделать что бы на пассате багажник сам открывался

Сабвуфер SVS SB13-Ultra с закрытым акустическим оформлением

Сегодня закрытое оформление применяется по большей части в сабвуферах, особенно в тех, что претендуют на серьезное музыкальное исполнительство. Дело в том, что для домашних кинотеатров энергичная отработка самых низких басов часто оказывается важнее динамической и фазовой точности на всем протяжении НЧ-диапазона. А вот объединив относительно компактный закрытый саб с приличными сателлитами, можно добиться куда более правильного звука — пускай и не наполненного сверхглубокими басами, зато крайне быстрого, собранного и четкого. Всё вышесказанное можно отнести и на счет полнодиапазонных колонок, «закрытые» модели которых изредка появляются на рынке.

Плюсы: Образцовая скорость атаки и разрешение в низкочастотном диапазоне. Относительная компактность конструкции.

Минусы: Требуется достаточно мощный усилитель. Сверхглубоких басов на грани инфразвука добиться весьма затруднительно.

Еще одним способом обуздания противофазного тылового излучения стал фазоинвертор, по-русски буквально «разворачиватель фазы». Чаще всего он представляет собой полую трубку, смонтированную на передней или задней поверхности корпуса. Принцип работы понятен из названия и незамысловат: раз избавляться от излучения обратной стороны диффузора трудно и нерационально, значит нужно синхронизировать его по фазе с фронтальными волнами и использовать на благо слушателей.

Амплитуда и фаза движения воздуха в фазоинверторе меняются в зависимости от частоты колебаний диффузора

По сути труба с воздухом является самостоятельной колебательной системой, получающей импульс от движения воздуха внутри корпуса. Обладая совершенно определенной частотой резонанса, фазоинвертор работает тем эффективнее, чем ближе колебания диффузора к частоте его настройки. Звуковые волны более высоких частот сдвинуть с места воздух в трубе просто не успевают, а более низкие хотя и успевают, но чем они ниже, тем сильнее смещается фаза излучения фазоинвертора, и, соответственно, его эффективность. Когда поворот фазы достигает 180 градусов, тоннель начинает откровенно и весьма эффективно глушить звук басового драйвера. Именно этим объясняется очень крутое падение звукового давления АС ниже частоты настройки фазоинвертора — 24 дБ/окт.

В борьбе с турбулентными призвуками конструкторы фазоинверторов постоянно экспериментируют

У закрытого ящика, между прочим, на частотах ниже резонансной спад АЧХ куда более плавный — 12 дБ/окт. Однако в отличие от глухой коробки, коробка с трубой в боковой стенке не заставляет конструкторов идти на любые хитрости ради максимального снижения резонансной частоты самого динамика, что довольно хлопотно и дорого. Тоннель фазоинвертора настроить куда проще — достаточно подобрать ее внутренний объем. Это, правда, в теории. На практике, как всегда, начинаются непредвиденные сложности, например, на больших уровнях громкости воздух на выходе из отверстия может шуметь почти как ветер в печном дымоходе. К тому же инертность системы частенько становится причиной падения скорости атаки и ухудшения артикуляции на басах. Одним словом, простор для экспериментов и оптимизации перед конструкторами фазоинверторных систем открывается просто невероятный.

Плюсы: Энергичная отдача на НЧ, возможность воспроизведения самых глубоких басов, относительная простота и дешевизна изготовления (при изрядной сложности расчета).

Минусы: В большинстве реализаций проигрывает закрытому ящику в скорости атаки и четкости артикуляции.

Попытки избавиться от генетических проблем фазоинвертора, а заодно и сэкономить на объеме корпуса без ущерба для глубины баса, натолкнули разработчиков на идею заменить полую трубу на мембрану, приводимую в движение колебаниями все того же рабочего объема воздуха. Проще говоря, в закрытом ящике установили еще один низкочастотный драйвер, только без магнита и звуковой катушки.

Пассивный излучатель может увеличить эффективную поверхность диффузора вдвое, или даже в трое, если в одной колонке они установлены парой

Конструкция получила название «пассивный излучатель» (Passive radiator), которое сплошь и рядом не слишком грамотно переводят с английского как «пассивный радиатор». В отличие от трубы сабвуфера, пассивный диффузор занимает куда меньше пространства в корпусе, не так критичен к расположению, и к тому же он, как и воздух внутри закрытого ящика, демпфирует ведущий драйвер, сглаживая его АЧХ.

Пассивный излучатель сабвуфера REL S/5. Основной драйвер направлен в пол

Еще один плюс — с увеличением площади излучающей поверхности для достижения нужного звукового давления требуется меньшая амплитуда колебаний, а значит, снижаются последствия нелинейной работы подвеса. Колеблются оба диффузора синфазно, а резонансная частота свободной мембраны настраивается точной регулировкой массы — к ней попросту подклеивают грузик.

Плюсы: Компактность корпуса при впечатляющей глубине басов. Отсутствие фазоинверторных призвуков.

Минусы: Увеличение массы излучающих элементов приводит к росту переходных искажений и замедлению импульсного отклика.

Акустика, вооруженная фазоинверторами и пассивными излучателями, воспроизводит глубокие басы благодаря резонаторам, работающим при посредничестве воздуха внутри АС. Однако кто сказал, что объем колонки не может играть роль низкочастотного излучателя сам по себе? Конечно может, и соответствующая конструкция называется акустический лабиринт. По сути, она представляет собой волновод, протяженностью в половину или четверть длины волны, на которой планируется добиться резонанса системы. Иными словами конструкция настраивается по нижней границе частотного диапазона АС. Конечно использовать волновод полной длины волны было бы еще эффективнее, но тогда для частоты, скажем, 30 Гц, его пришлось бы делать 11-метровым.

Акустический лабиринт — любимая конструкция акустиков-самодельщиков. Но при желании корпуса самой хитрой формы можно заказать и в готовом виде

Чтобы в колонке разумных размеров уместить даже вдвое более компактную конструкцию, в корпусе устанавливают перегородки, формирующие максимально компактный изогнутый волновод, поперечным сечением примерно равным площади диффузора.

От фазоинвертора лабиринт отличается в первую очередь менее «резонансным» (то есть не акцентированным на определенной частоте) звучанием. Относительно низкая скорость и ламинарность движения воздуха в широком волноводе препятствует возникновению турбулентности, порождающей, как мы помним, нежелательные призвуки. Кроме того, в данном случае драйвер свободен от компрессии, повышающей резонансную частоту, ведь его тыловое излучение не встречает практически никаких препятствий.

Схема для расчета корпуса на dbdynamixaudio.com

Бытует мнение, что акустические лабиринты создают меньше проблем со стоячими волнами в комнате. Однако при малейших просчетах в разработке или изготовлении, стоячие волны могут возникнуть в самом волноводе, который, в отличие от фазоинвертора, имеет куда более сложную структуру резонансов.

Вообще надо сказать, что грамотный расчет и точная настройка акустического лабиринта — процессы весьма непростые и трудоемкие. Именно по этой причине данный тип корпуса встречается нечасто, и только в АС очень серьезного ценового уровня.

Плюсы: Не только хорошая отдача, но и высокая тональная точность басов.

Минусы: Нешуточные размеры, очень высокая сложность (читай — стоимость) создания правильно работающей конструкции.

Рупор — самый древний и, пожалуй, самый провокационный тип акустического оформления. Выглядит круто, если не сказать эпатажно, звучит ярко, а временами… В старых фильмах герои иногда кричат друг другу что-то в рупор, и характерная окраска такого звука давно стала мемом и в музыкальном, и в киношном мире.

Avantgarde Acoustics Trio с низкочастотным рупорным массивом Basshorn XD высотой 2,25 м

Конечно от жестяной воронки с ручкой теперешняя акустика ушла очень далеко, но принцип работы все тот же — рупор повышает сопротивление воздушной среды для лучшего согласования с относительно высоким механическим сопротивлением подвижной системы динамика. Таким образом, повышается его КПД, а заодно и формируется четкая направленность излучения. В отличие от всех описанных ранее конструкций, рупор чаще всего используется в высокочастотных звеньях АС. Причина проста — его сечение увеличивается по экспоненте, и чем ниже воспроизводимая частота, тем большим должен быть размер выходного отверстия — уже на 60 Гц потребуется раструб диаметром 1,8 м. Понятно, что такие монструозные конструкции больше подходят для стадионных концертов, где их действительно периодически можно встретить.

Главный козырь адептов рупорного воспроизведения заключается в том, что акустическое усиление позволяет при заданной звуковой отдаче уменьшить ход мембраны, а значит, поднять чувствительность и улучшить музыкальное разрешение. Да-да, снова кивок обладателям ламповых однотактников. К тому же при грамотном расчете раструбы могут играть роль акустических фильтров, круто отсекая звук за пределами своей полосы и позволяя ограничиться самыми простыми, а потому вносящими минимальные искажения электрическими кросоверами, а иногда и вообще обойтись без них.

Системы Realhorns — особая акустика для особых случаев

Скептики же не устают напоминать о характерной рупорной окраске, особенно заметной на вокале, и придающей ему характерную гнусавость. Побороть данную неприятность действительно нелегко, хотя судя по тому, как играют лучшие образцы High-End-рупоров, вполне реально.

Плюсы: Высокий акустический КПД, а значит, отличная чувствительность и неплохое музыкальное разрешение системы.

Минусы: Характерная трудноустранимая окраска звука, недетские размеры средне- и тем более низкочастотных конструкций.

Именно такой аналогией проще всего описать характер излучения контрапертурных акустических систем, впервые разработанных в Советском Союзе в 80-х годах прошлого века. Принцип работы нетривиален: пара одинаковых динамиков смонтирована так, что их диффузоры расположены друг напротив друга в горизонтальной плоскости и двигаются симметрично, то сжимая, то разжимая воздушную прослойку. В результате создаются кольцевые воздушные волны, равномерно расходящиеся во все стороны. Причем характеристики этих волн в процессе их распространения искажаются минимально, а их энергия затухает медленно — пропорционально расстоянию, а не его квадрату, как в случае обычных АС.

Duevel Sirius сочетает элементы рупорной и контрапертурной конструкций

Помимо дальнобойности и круговой направленности, контрапертурные системы интересны на удивление широкой вертикальной дисперсией (порядка 30 градусов против стандартных 4-8 гр.), а также отсутствием доплеровского эффекта. Для динамиков он проявляется в биениях сигнала, вызванных постоянным изменением расстояния от источника звука до слушателя из-за колебаний диффузора. Правда, реальная слышимость данных искажений до сих пор вызывает много споров.

Взаимное проникновение концентрических звуковых полей правой и левой колонок создают весьма обширную и равномерную зону объемного восприятия, то есть по сути вопрос точного позиционирования АС относительно слушателя становится не актуален.

Итальяно-российская контрапертурная акустика Bolzano Villetri

Обратная сторона медали — большая опасность ранних отражений этих волн от стен и мебели, о вредоносности которых я подробно рассказывал в статье «Азы акустики для чайников: как правильно расставить колонки в комнате».

Характерная особенность контрапертуры в том, что звук, приходящий к слушателю фактически со всех сторон, хотя и создает впечатляющий эффект присутствия, не может в полной мере передать информацию о звуковой сцене. Отсюда рассказы слушателей об ощущении летающего по комнате рояля и прочих чудесах виртуальных пространств.

Плюсы: Широкая зона эффектного объемного восприятия, натуралистичность тембров благодаря нетривиальному использованию волновых акустических эффектов.

Минусы: Акустическое пространство заметно отличается от звуковой сцены, задуманной при записи фонограммы.

Если вы думаете, что на этом список вариантов оформления колонок исчерпывается, значит вы сильно недооцениваете конструкторский энтузиазм электроакустиков. Я описал только наиболее ходовые решения, оставив за кадром близкую родственницу лабиринта — трансмиссионную линию, полосовой резонатор, корпус с панелью акустического сопротивления, нагрузочные трубы.

Nautilus от Bowers & Wilkins — одна из самых необычных, дорогих и авторитетных в плане звучания акустических систем. Тип оформления — нагрузочные трубы

Подобная экзотика встречается довольно редко, но иногда она материализуется в конструкции с действительно уникальным звучанием. А иногда и нет. Главное не забывать, что шедевры, как и посредственности, встречаются во всех оформлениях, что бы ни говорили идеологи того или иного бренда.

источник